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Abstract Typical stereo algorithms treat disparity estima-

tion and view synthesis as two sequential procedures. In this

paper, we consider stereo matching and view synthesis as two

complementary components, and present a novel iterative re-

finement model for joint view synthesis and disparity refine-

ment. To achieve the mutual promotion between view synthe-

sis and disparity refinement, we apply two key strategies, dis-

parity maps fusion and disparity-assisted plane sweep-based

rendering (DAPSR). On the one hand, the disparity maps fu-

sion strategy is applied to generate disparity map from syn-

thesized view and input views. This strategy is able to detect

and counteract disparity errors caused by potential artifacts

from synthesized view. On the other hand, the DAPSR is used

for view synthesis and updating, and is able to weaken the in-

terpolation errors caused by outliers in the disparity maps.

Experiments on Middlebury benchmarks demonstrate that by

introducing the synthesized view, disparity errors due to large

occluded region and large baseline are eliminated effectively

and the synthesis quality is greatly improved.

Keywords stereo matching, view synthesis, disparity re-

finement.

1 Introduction

Stereo matching is one of the most extensively issues in com-

puter vision. It plays an important role in a large variety of
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computer vision applications including object recognition,

human tracking, image segmentation [1], image-based ren-

dering [2] as well as 3D photography. The goal of stereo

matching is to determine a disparity map that indicating the

corresponding pixels in two views of a scene. The disparity

map can be easily converted to a pixel-level depth map repre-

senting three-dimensional information of the scene. Once the

depth of a scene is recovered, a virtual image of any view-

point between the two views can be obtained by using depth-

image-based rendering (DIBR) techniques.

In the field of stereo vision, stereo matching and view syn-

thesis are always considered as two sequential procedures.

On the one hand, high-accurate depth maps or disparity maps

produce high quality synthesized views. On the other hand,

stereo accuracy benefits from multiview techniques [3] or

4D light field [4], i.e., additional views improve disparity

quality [5]. For the existing binocular stereo matching ap-

proaches, they tend to fail in occluded and disparity discon-

tinuous region (Fig. 1(b)). If a middle view is employed, the

stereo quality can be greatly improved due to the less oc-

cluded regions (Fig. 1(c)). For the practical binocular stereo,

only two real views can be captured by the device. Although

the DIBR techniques are able to provide additional views [6],

we encounter a chicken-and-egg problem that the interpola-

tion quality depends on stereo accuracy.

In this paper, we present a joint view synthesis and dispar-

ity refinement model that takes both view synthesis quality

and disparity accuracy into account. To the best of our knowl-

edge, no one has ever attempted to solve this problem
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Fig. 1 Disparity maps using different views. (a) Left view and its ground truth disparity map; (b) disparity map produced by the original input image
pair and its error map at 0.5-pixel threshold (31.83%); (c) disparity map produced by using the original image pair and an additional ground truth middle
view and its error map (20.58%); (d) disparity map produced by the proposed joint view synthesis and disparity refinement model and its error map
(25.80%). Note that relative to the error map of (c), most errors are centered on the left borders which are invisible in the input right view; (e) PSNR
value of the synthesized view and disparity error rate during the iteration

in the existing binocular stereo approaches. In order to

tackle the chicken-and-egg problem, we therefore resort to

an elaborately designed coarse-to-fine framework that uses

both the original image pair and a synthesized virtual view

to gradually refine the disparity maps (Fig. 1(d)). The frame-

work is mainly composed by two strategies (Fig. 2) to achieve

the mutual promotion between the disparity maps and the

synthesized view: 1) a disparity maps fusion scheme to de-

tect and neutralize the stereo errors after the view synthesis

step; and 2) a disparity-assisted plane sweep-based render-

ing (DAPSR) method to weaken the influence on synthesized

view from bad pixels of the disparity maps after the disparity

estimation step. These two strategies also ensure that, along

with the iterations the model outputs not only refined dispar-

ity maps but also an elegant virtual view with higher visual

coherency, see Figs. 1(d) and 1(e).

More specifically, the main obstacles we are facing are

two-folds: 1) The stereo quality will certainly be affected by

view synthesis artifacts; 2) Bad pixels in the disparity maps

will cause view synthesis errors. On the one hand, to handle

the first obstacle, the proposed disparity maps fusion scheme

is employed to produce the final disparity maps that are ro-

bust to the synthesis artifacts (Fig. 2(a)). Two intermediate

disparity maps will be produced using the synthesized view

as reference image and one of the inputs (left or right) views

as target image. We indicate that the minor errors are always

coupled in these two intermediate disparity maps, i.e., appear

on the same position of the two disparity maps and share the

same absolute value but opposite in sign. These errors will

be counteracted during the fusion. On the other hand, to han-

dle the second obstacle, the proposed DAPSR method is em-

ployed to interpolate and update the virtual view (Fig. 2(b)).

The key idea of the DAPSR is that the virtual view can be

produced by a soft blending of the swept input images with

the assistance of disparity maps. This interpolation strategy is

robust to small errors in the input disparity, which is crucial

for the initial interpolation.

Fig. 2 Two strategies (a) disparity maps fusion and (b) disparity-assisted
plane sweep-based rendering (DAPSR) are applied to the proposed model.
The dash block indicates the conventional relationship between stereo
matching and view synthesis, i.e., they are considered as two sequential pro-
cedures

The contributions of the paper are summarized as follows:

1. We proposed a novel joint virtual view synthesis and

disparity refinement model that outputs not only refined

disparity maps but also a synthesized middle view with

high visual coherency;

2. We develop a disparity maps fusion scheme to elimi-

nate the error caused by potential interpolation artifacts,

providing new disparity maps for the synthesized view

updating;

3. We introduce a disparity-assisted plane sweep-based

rendering (DAPSR) method to weaken interpolation er-

rors caused by bad pixels in the disparity maps.
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Fig. 3 Framework of the proposed joint view synthesis and disparity refinement model

We provide a new thought of the relationship between

stereo matching and view synthesis. We also demonstrate that

the proposed model can improve the performance of many

local and global stereo matching algorithms [7–9] (Fig. 2(c))

after integrating the proposed blocks in Figs. 2(a) and 2(b).

The rest of the paper is organized as follows: Section

2 reviews some existing approaches in view synthesis and

stereo matching. Section 3 provides an overview of the pro-

posed model. Section 4 presents the detailed description of

the patch-based stereo matching and the DAPSR method.

Section 5 gives the detailed description of the proposed iter-

ative refinement model for joint view synthesis and disparity

refinement. Except the proposed patch-based stereo matching

method, other methods will also be employed to the model to

demonstrate the universal applicability. The experimental re-

sult in terms of interpolation quality and stereo accuracy and

the robustness of the proposed stereo matching method will

be presented in Section 6. Section 7 gives a conclusion and

some discussions of the model.

2 Related works

In this paper, we mainly tackle the problem of the combi-

nation of view synthesis and stereo matching. We present

the first model for joint view synthesis and disparity refine-

ment that use a synthesized image as reference view to per-

form stereo matching. Therefore, the problem is split into two

parts: view synthesis and stereo matching.

2.1 View synthesis

View synthesis is a common technique extrapolating or inter-

polating a view using other available views, which is widely

applied to 3D display, such as 3D Video (3DV) and Free-

viewpoint TV (FTV) [10]. To synthesize a novel view, most

of state-of-the-art view synthesis approaches are based on

DIBR techniques that use the combination of a textured im-

age with a corresponding depth map or disparity map [6,11].

Point based rendering approaches [12] warp each pixel in the

texture image to the novel viewpoint based on the depth map.

The direct warping of pixels can produce undesired holes or

conflicting information from different views, particularly in

occluded regions. Mori et al. [13] proposed a 3D warping ap-

proach to solve the problem. The depth maps from different

views are first warped to the desired view, then a median fil-

ter is applied to fill the holes and a bilateral filter is applied

to smooth the warped depth maps. Finally, the images in the

real viewpoint are warped to the novel view according to the

warped depth maps, and the synthesized view is the blending

of them. The 3D warping approach produce a good result in

hole-filling, while the pixel conflict problem may corrupt the

synthesized view. Fickel et al. [2] proposed a triangle mesh

based rendering approach that uses multiple triangle meshes

as rendering proxies. Wanner and Goldluecke [14] introduced

a variational light field angular super-resolution framework

by utilizing the estimated depth map to warp the input im-

ages to the novel views. Zhang et al. [15] further presented

a generative variational model to enable per-pixel viewpoint

assignment for stereoscopic 3D images generation. Zhang et

al. [16] followed the idea and produce high quality disparity

maps as well as rendering results. However, the interpolation

result using triangle based rendering approach depends much

on the depth or disparity quality. In the proposed model, the

initial disparity maps are in low resolution, and quality of

stereo is assumed to be coarse, therefore, the mesh based ren-

dering approach is not competent in our model.

In recent years, some studies for maximizing the quality

of synthesized views have been presented that are based on

CNNs. Kalantari et al. [17] used two sequential convolutional
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neural networks to model depth and color estimation simulta-

neously by minimizing the error between synthesized views

and ground truth images. Wu et al. [5] presented a depth-free

framework to reconstruct a high angular resolution light field

using extracted epipolar plane images.

2.2 Stereo matching

Stereo matching approaches are usually composed of four

major components [18]: 1) computation of matching cost

for each pixel; 2) cost aggregation in the support regions;

3) disparity computation; and 4) refinement of the dispar-

ity map. The most common matching cost features are abso-

lute difference (AD), zero-mean normalized cross correlation

(ZNCC), gradient and census-based measures. Single feature

measurement is sensitive to the defect of the measure, while

the combination of features can achieve better result, such

as the combination of AD, census and scale-invariant feature

transform (SIFT) [19] and AD, census and gradient [20]. In

addition to these common features, convolutional neural net-

works (CNN) are also employed to extract features of small

patches of the stereo image pair [21, 22].

The existing stereo matching approaches can be divided

into two categories, local and global, depending on how the

cost aggregation and disparity computation procedures are

performed. Local approaches are mainly based on a simple

assumption that for the pixels having similar color or inten-

sity within a support window share similar disparities. Sup-

port weights [23–25] for every pixels within the window is

utilized to aggregate the costs together and assign the best

disparity value based on the minimum aggregated cost. Rhe-

mann et al. described the local aggregation as a cost filtering

problem in [7]. Local approaches are considered faster yet

less accurate than global approaches.

Global approaches takes account the overall structure of

the image by building an explicit data term and a pairwise

smoothness term and are assigning all disparities simultane-

ously by employing energy minimization techniques such as

graph cuts (GC) [26, 27], belief propagation (BP) [28], dy-

namic programming and markov random field (MRF). Zhang

et al. [16] partitioned the input images into 2D triangles, and

lifted the 2D triangles to 3D mesh using a two-layer MRF.

Lee et al. [8] and Guney et al. [29] decomposed images into

a set of superpixels, and obtained the disparity by applying

MRF. Psota et al. [30] converted the minimizing global en-

ergy problem into maximizing a posteriori (MAP) using Hid-

den Markov Trees (HMT). Mozerov and Van [31] combined

the cost filtering and energy minimization methods by apply-

ing a two step energy minimization approach: a fully con-

nected model and a conventional locally connected model,

and achieved a remarkable result.

Whether for local approaches or global techniques, the

main challenges are disparity smoothness and occlusion han-

dling. These two kinds of approaches work in different ways

to tackle this paradox and have their own merits. For local al-

gorithms such as dynamic window [32,33] and weighted win-

dow [25], the potential disparity plane of the target pixel is

first estimated based on the RGB information prior, then the

disparity is selected by winner-takes-all (WTA) algorithm.

For global technique, the overall scene structure and disparity

smoothness are taken into account to determine the disparity

map. Main methods to solve this optimization problem are

MRF [31], belief propagation (BP) [28, 34, 35] and graph cut

(GC) [26, 27, 36].

3 Algorithm overview

The overall framework of the proposed joint view synthesis

and disparity refinement model is shown in Fig. 3. First, an

initial middle view I(0)
S in low resolution (180 pixels in image

width in our implementation) is first synthesized using an ini-

tial disparity map, and the left view IL and the right view IR
as input (Fig. 3(a)). The initial disparity is generate by a pro-

posed patch-based stereo matching approach as shown in Fig.

4, and the employed view synthesis method is same as the one

for virtual view updating (Fig. 3(e)).

The initial low resolution middle view I(0)
S is input to the

iterative refinement module, and will be updated by its out-

put. In the next (ith) iteration, we use the virtual view I(i)
S as

reference view, and the left view IL and the right view IR as

target view, respectively, to obtain two intermediate disparity

maps D(i)
S L and D(i)

SR by employing the proposed stereo match-

ing method (Fig. 3(b)). The desired disparity maps D(i)
LR and

D(i)
RL are the fusion of the two disparity maps D(i)

S L and D(i)
SR

(Fig. 3(c)). This disparity maps fusion block is able to detect

and neutralize the initial interpolation error caused by the rel-

atively low quality stereo, where the detail will be described

in Section 4.2. The disparity maps D(i)
LR and D(i)

RL are upsam-

pled (Fig. 3(d)) using method in [37]. This block should be

skipped when the disparity maps reach the full resolution in

the last few iterations. Finally, the proposed DAPSR method

is used to update the virtual view I(i+1)
S into a higher resolution

(Fig. 3(e)).

The proposed model is a coarse-to-fine framework that

eventually outputs high quality synthesized view and dispar-
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ity maps. The initial low quality and low resolution synthe-

sized view will be updated to full resolution iteratively until

obtaining a desired high quality view. It should be highlighted

that other stereo matching methods are also appropriate for

the model by replacing the stereo matching step in (Fig. 3(b)).

4 Joint view synthesis and disparity refine-
ment model

4.1 Stereo matching

Figure 4 depicts the framework of the proposed patch-based

stereo matching method. First, the left image IL and the right

image IR are converted into gray-scale and downsampled to

the same resolution as I(i)
S , denoted as I(i)

L and I(i)
R , where i

means the ith iteration. Then the proposed patch-based stereo

matching method is applied to obtain disparity maps D(i)
S L and

D(i)
SR using I(i)

S as reference view, IL(i) and IR(i) as target view,

respectively. For initial disparity estimation, only the left im-

age I(0)
L and the right image I(0)

R are used as input. In the fol-

lowing, we introduce the proposed stereo matching method

using IL and IR as the input.

4.1.1 Patch-based local matching

In this procedure, we build a matching cost volume by per-

forming patch-based matching. The most common cost fea-

tures are absolute differences (AD), Birchfield and Tomasi’s

pixel dissimilarity, normalized cross correlation (NCC),

gradient-based measures and census-based measures. Single

feature measurement is sensitive to the defect of the feature,

while combination of features achieves a more robust mea-

surement. Klaus et al. [34] proposed a linear combination

of sum of absolute differences (SAD) and gradient. Mei et

al. [32] proposed a normalized combination of AD and cen-

sus. Their combinations of features achieve applausive re-

sults, but seems straightforward and relying on parameters.

Therefore, we proposed an improved feature combination

strategy that automatically determine the weight between the

features. Given a 5×5 patch PL centered on pixel pL in the left

image IR and a patch PR,d in the right image IR with disparity

d, the matching cost in our work contains two parts, gradient

feature Cgradient(P, d) and census feature Ccensus(P, d). Gradi-

ent information is incorporated into patch matching to im-

prove searching accuracy for similar patches [38]. We also

use first- and second-order derivatives as features to calculate

matching cost. The features is extracted by applying four 1-D

gradient filters:

G1 = [−1, 0, 1], G2 = GT
1 ,

(1)
G3 = [1, 0,−2, 0, 1], G4 = GT

3 .

The extracted feature Fg is represented as concatenation of

the vectorized filter outputs. The cost value Cgradient(P, d) is

defined as the L2 distance between the features:

Cgradient(P, d) =
1

dim(Fg)
||Fg(PL) − Fg(PR,d)||2, (2)

where Fg(PL) is the feature of the patch PL, Fg(PR,d) is the

feature of the patch PR,d, and dim(Fg) is dimension of the

feature.

For census feature Ccensus(P, d), it is defined as the

weighted sum of Hamming distance of each pixel in the

patches. For each pixel qL in the patch PL, a 5 × 5 window is

used to encode its local structure in a 32-bit vector, denoting

as Fc and Ccensus(P, d) is computed as:

Fig. 4 Framework of the proposed patch-based stereo matching method
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Ccensus(P, d) =

∑
qL∈PL

ω(pL, qL)Ham(Fc(qL), Fc(qR,d))

∑
qL∈PL

ω(pL, qL)
,

(3)
ω(pL, qL) = exp

(
−||Ic(pL) − Ic(qL)||1

λc

)
,

where qR,d is the correspondence pixel of qL, ω(pL, qL) is a

weight function to overcome the edge-fattening problem, and

Ic denotes the image in RGB space, pL is the center pixel of

the patch PL.

Typical stereo matching methods combine the two features

with a constant weight and adopt a classical winner-takes-

all (WTA) strategy that selects disparity with the lowest cost.

However, the result of the strategy depends on the robust-

ness of the measures, i.e., the selected disparity is error-prone

when several cost values are close to the minimum, and the

true disparity may not locates at the position with the mini-

mum cost (see Fig. 5(c)). The inaccurate measurement of one

feature can corrupt the other if we simply add the two fea-

tures with a fixed weight. Alternatively, we proposed an novel

combination method using an optimal weight. The matching

cost C(P, d) between the two patches PL and PR,d is combined

as follows:

C(P, d) = αρ(Cgradient(P, d), cgradient)

+(1 − α)ρ(Ccensus(P, d), ccensus),

ρ(x, c) = 1 − exp(− x
c
),

α = exp(−Varcensus/Vargradient

cVar
), (4)

where cgradient = 30 and ccensus = 5 are two con-

stants, α is the optimal weight between Cgradient and Ccensus,

Vargradient is variance of the four minimum values of

Cgradient(P, d), Varcensus is variance of the four minimum val-

ues of Ccensus(P, d), and cVar = 1.4427. By measuring the

variance of the costs of these two features, the optimal weight

α endows the higher efficient feature with a more proportion.

Figure 5 shows the result with and without the proposed op-

timal weight α. We select disparity with the minimum cost as

the initial disparity result, denoted as DL for the left view and

DR for the right view.

4.1.2 Pixel classification

By implementing the cross checking and the correlation con-

fidence measure [28], the pixels in the initial disparity map

are classified into three components: stable pixels, occlusion

pixels and unstable pixels (as shown in Fig. 4(b)). For cross

checking, the right disparity map DR is re-projected to the left

image, denoted as DR2L. Finally, a pixel is declared unocclu-

sion if the following relation holds:

|DL(p) − DR2L(p)| < 1. (5)

Fig. 5 WTA strategy without and with the optimal weight α. (a) Cgradient; (b) Ccensus ; (c) final matching cost C(P, d) without the optimal
weight α; (d) final matching cost C(P, d) with the optimal weight α. The gradient feature provides reliable matching costs, while census feature
fails to. If we combine the costs evenly, the WTA strategy will fails to select the true disparity. However, the combination with α can provide a
clear minimum value
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If the relation does not hold, the pixel is declared as occlu-

sion. For correlation confidence measure, the minimum and

the second minimum cost values of a pixel p are selected, be-

ing denoted as C1(p) and C2(p), respectively. Then the corre-

lation confidence VCon f is defined as:

VCon f = |C1(p) −C2(p)
C2(p)

|. (6)

If the confidence VCon f is above a threshold b = 0.04, the

pixel is declared as stable, otherwise unstable. For a stable

pixel, we take the disparity value with the minimum cost be-

tween the left disparity map and the re-projected right dispar-

ity map as the final disparity in this procedure.

4.1.3 Disparity refinement

After pixel classification, the disparity map contains holes

caused by occlusion pixels and the unstable pixels. Besides,

the quantized disparity by performing WTA strategy contains

large discontinuities and errors. This block focuses on dispar-

ity refinement including hole-filling, disparity filtering and

sub-pixel estimation, as shown in Fig. ??(c).

Hole-filling A bilateral filter is applied to the cost vol-

ume in hole pixel based on the following assumptions: 1) The

pixels with similar colors around a region are more likely to

have similar disparity; 2) For occlusion areas, the pixels are

always located at background with small disparity.

The filter is designed as follows:

Occlusion : FO(p, q) = fc(p, q) fs(p, q) fd(q),

Unstable : FU(p, q) = fc(p, q) fs(p, q),

fc(p, q) = exp

(
−‖Ic(p) − Ic(q)‖1

λc

)
, (7)

fs(p, q) = exp

(
−‖p − q‖F

λs

)
,

fd(q) = exp

(
−|D(p′) − Dmin|

λd

)
,

where p is the current hole pixel centered in a window with

radius rB, q ∈ N(p) is the valid neighbor pixels of p, and u,

Ic denotes the RGB image, D is the disparity map, and Dmin

is the minimum valid disparity in the current patch. λc and

λs are two constants used as thresholds of the color and dis-

tance difference. λd = 0.5Dmin. Traditional bilateral filter is

consisted of fc and fs as color term and distance term, respec-

tively. For occlusion pixels, an additional term fd is added to

the filter based on the second prior assumption, i.e., the costs

corresponding to a pixel that holds small disparity in the fil-

ter window are endowed with large weight. After the cost

volume filtering for unstable and occluded pixels, the WTA

strategy is used to select the final disparity values.

Weighted median filter As an extension of bilateral fil-

ter, weighted median filter is widely applied to stereo match-

ing [31,39]. Weighted median filter replaces the current pixel

x with the weighted median of the neighbor pixels q ∈ N(p)

within a window (usually a box) by accumulating a weighted

histogram in the pixel:

h(p, i) =
∑

q∈N(p)

ω(p, q)δ(D(q), i),

ω(p, q) = exp(−||Ic(p) − Ic(q)||2F
2σ2

w
), (8)

where ω(p, q) is the weight depending on the RGB image

Ic, D is the disparity map obtained in the previous step, i is

the discrete bin index, δ(·) is the Kronecker delta function:

δ(·) = 1 when the argument is 0 and δ(·) = 0 otherwise,

and σw is an intrinsic parameters of the filter. To accelerate

the execution, a fast weighted median filter is applied to our

work [40]. The weighted median filter uses a joint-histogram

representation, median tracking, and a new data structure that

enables fast data access, reducing computation complexity

from O(r2
w) to O(rw) (rw is the the window radius).

Sub-pixel estimation In this procedure, a sub-pixel es-

timation algorithm based on quadratic polynomial interpo-

lation is performed to reduce the discontinuities caused by

quantization disparity selection [28]. First, for pixel p, we se-

lect disparity candidates dp, d−p and d+p , where dp is the initial

disparity in this step, d−p = dp − 1 and d+p = dp + 1. Then the

interpolated disparity d̂p is estimated as follows:

d̂p = dp −
C(p, d+p ) −C(p, d−p )

2(C(p, d+p) +C(p, d−p ) − 2C(p, dp))
. (9)

Finally, a box-car filter (FB) is applied to the interpolated re-

sult:

FB(p, q) =

⎛⎜⎜⎜⎜⎜⎝1, |d̂(q) − d̂(p)| < 1,

0, else,

⎞⎟⎟⎟⎟⎟⎠ (10)

where q ∈ N(p) is the neighbor pixels of p within a box win-

dow (window radius rB = 4 by default).

4.2 Disparity maps fusion

In this procedure (Fig. 3(c)), disparity maps D(i)
S L and D(i)

SR

obtained by the stereo matching method described above are

applied to produce disparity maps D(i)
LR and D(i)

RL, which are

located at positions of the input views. We generate them by
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adopting the following equation:

D(i)
LR(xl, y) =

⎧⎪⎪⎨⎪⎪⎩
−D(i)

S L(x, y) + D(i)
SR(x, y), else,

0, |D(i)
S L(x, y) + D(i)

SR(x, y)| > Dm(x, y),

D(i)
RL(xr, y) =

⎧⎪⎪⎨⎪⎪⎩
D(i)

S L(x, y) − D(i)
SR(x, y), else,

0, |D(i)
S L(x, y) + D(i)

SR(x, y)| > Dm(x, y),
(11)

xl = x − D(i)
S L(x, y)

xr = x − D(i)
SR(x, y)

Dm(x, y) = τ(i) ·max(−D(i)
S L(x, y),D

(i)
SR(x, y)),

where −D(i)
S L + D(i)

SR stands for the fused disparity map at the

position μ. It should be noted that D(i)
S L is considered to have

an opposite disparity values with D(i)
SR due to a reversed stereo

matching. To obtain the disparity maps D(i)
LR and D(i)

RL at po-

sitions of the input views, we simply warp −D(i)
S L + D(i)

SR to

the left view and right view, respectively. Consider a pixel in

−D(i)
S L+D(i)

SR located at (x, y), to regain the corresponding pixel

in D(i)
LR located at (xl, y), we re-project the pixel back to I(i)

L

by a horizontal displacement −D(i)
S L(x, y). The pixel’s value

−D(i)
S L(x, y)+ D(i)

SR(x, y) stands for the disparity from I(i)
L to I(i)

R

at (xl, y). The disparity map D(i)
RL is regained analogously. In

the initial iterations, our virtual view is coarse, i.e., contains

pixel position error comparing with the real image at position

μ. However, this error can be counteracted effectively after

the disparity maps fusion. Assume a pixel at (x, y) in I(i)
S , the

estimated disparity to I(i)
L is dS L and the true disparity is d(gt)

S L ,

dS L = d(gt)
S L + Error1, and the estimated disparity from I(i)

S to

I(i)
R is dSR and the true disparity is d(gt)

SR , dSR = d(gt)
SR + Error2.

dLR = −dS L + dSR (12)

= −(d(gt)
S L + Error1) + (d(gt)

SR + Error2). (13)

When the errors are small and the correspondences between

I(i)
S (x, y) and I(i)

L (xr, y), I(i)
S (x, y) and I(i)

R (xt, y) are found pre-

cisely, Error1 − Error2 = 0, and the final disparity dLR =

−d(gt)
S L + d(gt)

SR . On the other hand, when the errors are too big,

i.e., the pixel holds the relation ||D(i)
S L(x, y)| − |D(i)

SR(x, y)|| >
Dm(x, y), the disparity at this location will be set invalid. The

threshold τ(i) controls this error tolerance degree. Figure 6

illustrates the mechanism of the strategy. For the initial it-

eration, the threshold is set as a large value to tolerate the

interpolation error. With the increasing of iteration times, we

gradually tighten the threshold to detect more disparity out-

liers. For invalid pixel (whose error is beyond the threshold),

we adopt a similar strategy in Eq. (7).

4.3 Disparity maps upsampling

The resolution of the fused disparity maps are restricted by

the interpolated view I(i)
S . To render a higher resolution vir-

tual view I(i+1)
S , we upsample the disparity maps D(i)

LR and D(i)
RL

(Fig. 3(d)) by employing the spatial-depth super resolution

approach proposed by Yang et al. [37]. The upsampling fac-

tor in every iteration of our iterative novel view refinement

model is 2×. The disparity maps after performing super reso-

lution are denoted as D′(i). It should be noticed that this pro-

cedure is ignored if the disparity maps already hold the same

resolution with the original RGB image.

4.4 Disparity-assisted plane sweep-based rendering

(DAPSR)

The proposed virtual view rendering method is used for

both the initial interpolation (Fig. 3(a)) and the virtual view

Fig. 6 Mechanism of the proposed disparity maps fusion strategy. Top left shows the disparity map DSL; Top middle shows the disparity map
DSR; Bottom left shows the disparity map −DSL + DSR; Bottom middle shows the warped ground truth disparity map GTS . The extracted
disparity data being located at the red line in the disparity maps explain the error counteraction mechanism. Small errors, like Error1 and
Error2, will be neutralized during the fusion. While the pixels with big error are set invalid
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Fig. 7 Illustration of robustness of the proposed disparity maps fusion strat-
egy. (a) Interpolation result and the fused disparity map versus iteration
times; (b) initial interpolation quality versus stereo quality of output dis-
parity map

updating (Fig. 3(e)). The key idea for the proposed DAPSR

is that for each candidate disparity, the input views are swept

to the virtual viewpoint to interpolate a set of candidate im-

ages, then the virtual view is the soft blending of the candi-

date images with the assistance of disparity maps. For dis-

parity errors within one-pixel range, an plausible interpola-

tion result can still be produced by using linear interpola-

tion [41]. Therefore, the interpolation of candidate images in

the DAPSR is robust to small disparity errors. Due to the ini-

tial interpolation is always implemented at a small resolution,

the robustness to small disparity error is crucial to the entire

model.

Specifically, for the initial interpolation, the two RGB im-

age pair I(0)
L and I(0)

R (downsampled to the desired resolution)

and the corresponding disparity map pair D(0)
L and D(0)

R are

employed. For each d, I(0)
L and I(0)

R are swept to the virtual

viewpoint μ by shift −μd and (1 − μ)d, respectively, where

μ ∈ [0, 1] is considered as the normalized distance from

the virtual view I(0)
S to I(0)

L (with μ = 0 the position of left

view I(0)
L , and μ = 1 the position of right view I(0)

R ). The re-

sulting images are denoted as I(0)
d,L and I(0)

d,R, and applied to

interpolate the candidate images using linear interpolation

I(0)
d,S = (1 − μ)I(0)

d,L + μI
(0)
d,R. At the same time, the input dispar-

ity maps D(0)
L and D(0)

R and images I(0)
L and I(0)

R are warped to

the virtual view, and the resulting maps (images) are denoted

as D(0)
μ,L, D(0)

μ,R, I(0)
μ,L and I(0)

μ,R, respectively. The warp operation

produces invalid pixels in the occluded regions. We then use

the valid pixels in the disparity maps to produce a blended

disparity D(0)
b = (1 − μ)D(0)

μ,L + μD
(0)
μ,R. The initial virtual view

is computed as follows:

I′(0)
S (p) =

∑
d∈D(0)

b

ωd(p)I(i)
d,S (p)

∑
d∈D(0)

b

ωd(p)
,

(14)

ωd(p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 − |D(0)

b (p) − d|
2

, |D(0)
b (p) − d| � 1,

0, else,

where p is a pixel. The equation above describes the blending

of pixels that are visible in both input views. For occluded re-

gions, the warped images I(0)
μ,L and I(0)

μ,R are used for rendering

the final initial virtual view I(0)
S :

I(0)
S (p) = I′(0)

S (p)δS (p) + I(0)
μ,L(p)δL(p) + I(0)

μ,R(p)δR(p), (15)

where δS (p) = 1 if I′(0)
S (p) is valid in the non-occluded re-

gions, δL(p) = 1 if I(0)
μ,L(p) is valid in the occluded regions,

and is 0 otherwise. δR(p) is defined analogously. Finally, a

5 × 5 median filter is employed to fill the holes.

To update the virtual view I(i+1)
S in the following iterations,

in addition to the RGB image pair I(
Li) and I(

Ri) (downsampled

to the desired resolution) and their corresponding disparity

maps D′(i)LR and D′(i)RL , the virtual view in the previous iteration

I(i)
S (upsampled to the desired resolution) is also employed.

The rendering procedure is the same as that for the initial in-

terpolation. The only difference is that we use I(i)
S to fill the

holes in stead of the median filter.

By employing the proposed strategies of disparity maps fu-

sion and DAPSR, the quality of the output disparity maps as

well as interpolated view can be greatly improved with the

iteration, as shown in Fig. 7(a). To further demonstrate the

robustness of the strategies, we deliberately interfere the ini-

tial interpolation quality by adding noise to the initial dispar-

ity map. Figure 7(b) shows initial interpolation quality versus

stereo quality of an output disparity map. The PSNR value

of the initial interpolation varies from 24 to 34, yet the final

output disparity map get little influence.

5 Experimental results

In this section the Middleburry datasets is applied to evalu-

ate the proposed model. The input views are view1 and view5

of half size version in Middleburry 2.0 [42] (Tsukuba, Venus,
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Teddy and Cones cases are the default resolution in the evalu-

ation v.2), and im0 and im1 of quarter size version in Middle-

burry 3.0 [43]. Besides the ground truth disparity maps, the

Middleburry 2.0 [42] also has the ground truth middle views,

providing a reference to evaluate the synthesized view. The

evaluation is performed on two aspects: interpolation result

and stereo result. The datasets with varying illumination and

exposure conditions are also employed to demonstrate the ro-

bustness of the proposed framework. For the occlusion pixels

we set λs = 2rB, rB = 20, and for the unstable pixels we

set λs = rB, rB = 10. The iteration times in the model is 5,

and τ(i) = [0.5, 0.4, 0.3, 0.2, 0.2]. The interpolation position

μ = 0.5 as default, corresponding to view3. The rest parame-

ters applied to the model are given in Table 1, where rW and

σW are two parameters being applied to the weighted median

filter. The employed methods include Classic+NLP (global)

[9], CostFilter (local) [7] and Adaptive Random Walk (ARW,

global) [8]. The computational complexity of the proposed

method is O(kNL), where k is the iteration times, N is the

number of pixels in the image and L is the number of dispar-

ity labels. The average running time of the proposed method

on a 0.35Mpix image is about 60 seconds in Matlab without

GPU acceleration, whereas the stereo matching is the most

time consuming step.

Table 1 Parameters settings

cgradient ccensus cVar λc

40 5 1.4427 10

λs rW σW μ

15 5 15.5 0.5

5.1 Interpolation result

In this subsection, both the interpolated initial virtual view

and refined virtual view are evaluated using PSNR metric. In

the stereo matching block of our model, we also employ other

methods to show the universal applicability.

We use view3 in the datasets as the ground truth to eval-

uate the interpolation result. Figure 8 provides parts of the

interpolation result with and the model. Some failed regions

are zoomed in to present a clearer comparison. The proposed

model produces a better interpolation result, and the CostFil-

ter also achieves a better performance after being refined by

the model, for example the flank and the arm of the baby in

Baby2; the head of the bowling pin and the edge of the ball in

Bowling2; the head of the doll and the ear of the bear in Dolls;

and the surrounding of the reindeer’s neck in Reindeer. Table

Fig. 8 Comparisons of interpolation result on Baby2, Bowling2, Dolls and Reindeer datasets (a) Ground truth; (b) CostFilter; (c) CostFilter
(refined); (d) ours. PSNR values are given at left side of the image. Red boxes highlight the failed regions, one of which is zoomed in
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Table 2 PSNR evaluation of the initial interpolations and the refined results

Initial Classic+NLP CostFilter ARW Classic+NLP (R) CostFilter (R) ARW (R) Proposed

Baby2 33.11 29.60 32.55 31.35 31.90 33.66 32.35 33.94

Baby3 33.00 29.42 30.41 30.36 31.47 33.55 31.20 33.71

Bowling2 28.13 25.09 30.34 29.22 30.66 33.24 31.11 34.25

Dolls 29.01 24.01 28.33 28.10 28.69 30.49 30.22 30.56

Reindeer 28.07 20.71 27.12 25.27 26.31 32.03 27.37 31.78

Teddy 31.59 30.25 29.96 30.16 32.81 30.63 31.66 32.87

Cones 28.44 23.25 28.14 27.31 28.89 29.12 27.86 30.44

2 presents a detailed interpolation result in terms of PSNR

and SSIM, where (R) in the table indicate the refined result

by using our proposed model. The interpolation result using

the proposed model surpass the original result in all cases due

to the better stereo quality. And the proposed stereo match-

ing method outperforms other approach except the Reindeer

case, in which the refined CostFilter [7] provides the best in-

terpolation results. Table 2 also lists initial interpolation re-

sults (ground truth views are downsampled for comparison)

to provide reference comparison between initial interpola-

tions and their refined versions. The results show that the vir-

tual views are improved when using the proposed model.

5.2 Stereo result

We evaluate the proposed model using the patch-based stereo

matching and other approaches as the stereo kernel on both

Middlebury 2.0 [42] and 3.0 benchmarks [43]. The evalua-

tion is performed at 0.5-pixel threshold. Table 3 provides the

evaluation results on the Middlebury 2.0 benchmarks [42],

Tsukuba, Venus, Teddy and Cones, and the resulting disparity

maps are shown in Fig. 9. The average rank of the proposed

stereo matching approach is 35.2, ranking at 2nd place among

the local methods. Besides, the average rank of the refined

CostFilter is promoted to 35.8 from the original 48.0.

In addition, to further evaluate two strategies in the pro-

posed framework, we perform a number of ablation studies

by replacing the disparity maps fusion with a naïve adding of

the disparity maps, denoted as Ours (w/o DF) for short, and

by replacing the DAPSR with a simple DIBR method, de-

noted as Ours (w/o DAPSR), respectively. The results in Ta-

ble 3 show that the proposed strategies, disparity maps fusion

and DAPSR, are important to the entire framework.

We demonstrate some evaluation result using Middlebury

datasets 2005, 2006 [42] and 2014 [43] in Fig. 10. The figure

shows the result produced by the original stereo matching ap-

proach (Classic+NLP [9] for the Baby3, ARW [8] for the Mo-

torcycle case and CostFilter [7] for the rest cases), the refined

version using our model and the proposed stereo matching

method. The stereo quality in discontinuous and occlusion

region is greatly enhanced after introducing the synthesized

virtual view, such as the background between the left foot

and the cow in Baby3, and the bench in Adiron. The proposed

model using patch-based stereo matching also produces dis-

parity maps that are more respectful to the ground truth scene

structure. Bad pixel rates at 0.5-pixel error thresholds in all

regions within the image of each method are presented in Ta-

ble 4. The quantized result shows that the stereo matching

approaches are improved after being applied to the model.

Table 3 Bad pixel rates evaluated at 0.5-pixel error threshold on Middlebury evaluation 2.0 [42]

Avg. Tsukuba Venus Teddy Cones

Rank nonocc. all disc. nonocc. all disc. nonocc. all disc. nonocc. all disc.

Our approach 35.2 11.8 12.1 21.9 1.62 2.07 8.32 9.44 16.5 23.8 5.07 11.5 12.6

CostFilter (R) 35.8 9.42 11.4 13.4 2.33 2.82 10.4 10.9 17.0 27.8 6.69 12.3 17.2

TSGO [31] 37.8 8.78 9.45 14.9 0.72 1.12 5.24 10.1 16.4 21.3 8.49 14.7 16.5

CostFilter [7] 48.0 11.2 11.7 15.6 5.99 6.43 10.8 11.3 18.1 25.3 7.71 13.7 15.1

AdaptingBP [34] 52.0 19.1 19.3 17.4 4.84 5.08 7.84 12.8 16.7 26.3 7.02 13.2 14.0

Ours (w/o DAPSR) 64.0 12.6 13.1 23.5 2.69 3.53 9.39 14.7 17.8 24.6 10.2 16.5 17.3

Classic+NLP (R) 77.3 9.04 9.48 24.6 2.70 3.22 12.5 13.6 21.7 33.8 10.0 16.7 25.1

Ours (w/o DF) 77.5 14.1 15.4 26.6 3.07 3.92 10.7 16.0 18.9 25.7 12.1 18.3 19.6

Classic+NLP [9] 102.2 14.4 14.9 27.1 2.01 2.83 16.3 14.0 21.9 34.4 24.0 29.6 29.0

ARW (R) 104.4 14.0 15.2 31.5 5.24 6.49 28.4 15.5 23.3 35.5 10.9 18.0 25.0

ARW [8] 134.9 18.2 20.0 34.5 10.5 11.9 37.3 18.0 25.9 38.8 12.8 21.2 29.6
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Fig. 9 Stereo result on Middlebury 2.0 benchmarks Middle2.0, Tsukuba, Venus, Teddy and Cones (a) Left image; (b) ground truth; (c)
CostFilter; (d) CostFilter (refined); (e) ours

Fig. 10 Stereo result on Middlebury 2.0 Middle2.0 and Middlebury 3.0 Middle3.0 benchmarks (Baby3, Reindeer, Adirondack, Motorcycle
and Recycle) (a) Left image; (b) ground truth; (c) other approaches: Classic+NLP for the Baby3 case , ARW for the and Motorcycle case and
CostFilter for the rest. The failed regions are highlighted by black boxes; (d) the refined version; (e) ours
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Table 4 Bad pixel rates evaluated at 0.5-pixel error threshold on Middleburry datasets [42, 43]

Classic+NLP CostFilter ARW Classic+NLP (R) CostFilter (R) ARW (R) Proposed

Baby2 29.99 32.06 22.44 24.82 18.62 20.43 18.46

Baby3 17.12 18.43 21.30 16.73 15.64 19.46 12.69

Bowling2 31.83 27.66 24.30 25.80 21.80 22.40 21.48

Dolls 33.39 33.12 29.27 27.66 29.10 28.90 22.60

Reindeer 43.22 25.84 28.85 28.79 20.52 27.72 16.59

Teddy 21.91 17.72 25.90 21.62 17.03 23.31 16.50

Cones 29.57 12.65 24.50 16.70 12.27 21.33 11.54

Adiron. 35.70 38.29 36.70 28.51 25.23 34.48 16.45

Motor. 43.25 30.46 40.17 29.61 27.26 38.93 17.37

Pipes 46.79 36.48 43.38 38.13 32.13 42.05 26.77

Recycle 31.61 30.22 35.54 29.98 25.12 34.83 18.11

Fig. 11 Interpolation and stereo results yielded by each method versus the iteration time: (a) the average PSNR values of interpolation, and
(b) the average error rates at 0.5-pixel threshold of stereo

In addition, we show the quality of the virtual views and

the stereo results against iteration time in Fig. 11 (results are

averaged on all the cases). The initial virtual view I(0)
S is 180

pixels in image width and is updated to the full resolution

(same as the input image) at the 3rd iteration. In the last two

iterations, the quality of the virtual views and the stereo re-

sults are tending to be stable.

5.3 Robustness testing

In the real world environment, the intensity value of cor-

responding pixels of the captured left and right views can

be distort by illumination and camera exposure fluctuations.

In this section, we test the proposed model using datasets

[42, 43] under different illuminations or exposures to further

demonstrate the robustness. The results are shown in Fig.

12, where the quantitative evaluation results at 0.5-pixel er-

ror threshold are given at top left of the disparity maps. The

experiment results show that the proposed patch-based stereo

matching method is robust to radiometric variations.

5.4 Limitations

The proposed framework is intended to be designed for ad-

dressing large parallax between the input views by introduc-

ing a synthesized view. When the input stereo pair has a small

baseline, e.g., adopting view1 and view2 in the Middleburry

2.0 datasets as the input stereo pair, it will be very difficult

to show its advantage for the designed framework. Tabel 5

shows the results using view1 and view2 / view3 as the input.

The results show that the proposed framework fail to improve

the quality of the resulting disparity maps. Therefore, an ap-

propriate baseline between the views is one of the conditions

for the convergence of our iterative refinement framework.

Besides, the proposed stereo matching algorithm is a local

method, thus, suffers from textureless regions and repetitive

patterns as other local methods. Fortunately, when applying a

global method as the stereo kernel, such as Classic+NLP [9]

or ARW [8], our framework is still able to converge.

6 Discussions and conclusions

In this paper, we have presented a novel iterative refinement

model for joint view synthesis and disparity refinement. The

main contribution of the paper is developing a framework

that combines virtual view refinement and stereo matching.
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Fig. 12 Stereo result using images with varying illuminations or exposures. (Bowling2, Wood1, Pipes, Recycle): (a) left image; (b) our
synthesized view; (c) right image; (d) ours stereo result (0.5-pixel) error rate is given at top left of each image; (e) Ground truth disparity map

Table 5 Failure cases using stereo pairs with small parallax at 0.5-pixel

Views’ index Classic+NLP Classic+NLP(R)

view1-2 10.71 11.76
Flower pots

view1-3 17.60 18.10

view1-2 1.67 8.44
Cloth1

view1-3 2.91 4.45

view1-2 5.21 6.80
Rock2

view1-3 6.23 7.00

To realize the mutual promotion between the interpolated

view and the disparity map, we have proposed a disparity

maps fusion and a disparity-assisted plane sweep-based ren-

dering strategy. The former strategy is designed to eliminate

the disparity error from interpolation artifacts by perform-

ing error detection and interpolation. And the latter strategy

focuses on interpolation robustness to the bad pixels in the

disparity maps. We have demonstrated that the proposed

model is able to generate a synthesized view with high visual

coherency as well as high quality disparity maps. We also

show the general applicability of the model by employing

other stereo matching approaches to the model. In the future

work, we will extend the idea to optical flow estimation and

light field stereo. In addition, there is potential to apply a

learning-based system for joint view synthesis and disparity

estimation to replace our iterative refinement framework.
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