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Network on EPI and Extended Applications
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Abstract—In this paper, a novel convolutional neural network (CNN)-based framework is developed for light field reconstruction from a
sparse set of views. We indicate that the reconstruction can be efficiently modeled as angular restoration on an epipolar plane image
(EPI). The main problem in direct reconstruction on the EPI involves an information asymmetry between the spatial and angular
dimensions, where the detailed portion in the angular dimensions is damaged by undersampling. Directly upsampling or
super-resolving the light field in the angular dimensions causes ghosting effects. To suppress these ghosting effects, we contribute a
novel “blur-restoration-deblur” framework. First, the “blur” step is applied to extract the low-frequency components of the light field in the
spatial dimensions by convolving each EPI slice with a selected blur kernel. Then, the “restoration” step is implemented by a CNN,
which is trained to restore the angular details of the EPI. Finally, we use a non-blind “deblur” operation to recover the spatial high
frequencies suppressed by the EPI blur. We evaluate our approach on several datasets, including synthetic scenes, real-world scenes
and challenging microscope light field data. We demonstrate the high performance and robustness of the proposed framework
compared with state-of-the-art algorithms. We further show extended applications, including depth enhancement and interpolation for
unstructured input. More importantly, a novel rendering approach is presented by combining the proposed framework and depth
information to handle large disparities.

Index Terms—Light field reconstruction, convolutional neural network, epipolar plane image, depth assisted rendering.
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1 INTRODUCTION

L IGHT field imaging [1], [2] is one of the most extensively
used methods for capturing the 3D appearance of a

scene. Rather than a limited collection of 2D images, a light
field camera is able to collect not only the accumulated in-
tensity at each pixel but also light rays from different direc-
tions. Early light field cameras, such as multi-camera arrays
and light field gantries [3], required expensive custom-made
hardware or time-consuming capturing process.

In recent years, the introduction of commercial and in-
dustrial light field cameras, such as Lytro [4] and RayTrix [5]
has taken light field imaging into a new era. These plenoptic
(light field) cameras are composed of microlens array and
have the capacity of simultaneous capture. Unfortunately,
due to the restricted sensor resolution, they must make a
trade-off between spatial and angular resolution, i.e., one
can obtain dense sampling images in the spatial dimensions
but only sparse sampling in the angular (viewing angle)
dimensions or vice versa.

To solve this problem, various learning-based methods
[6], [7], [8] have been proposed to super-resolve the light
field in angular dimensions using a small set of views with
high spatial resolution. In contrast to certain conventional
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studies [9], [10], [11] that focus on novel view synthesis
or reconstruction of the plenoptic function, learning-based
methods train the network by directly minimizing the error
between the synthesized view and the ground truth image.
However, the network training is data dependent and can-
not be easily transferred to data with different appearance
properties, which limits the universal usage of the network.
For example, microscopy scenes exhibit challenging struc-
tures and have very different appearances from the scenes
in daily life, leading to undesirable results when training the
network with macroscopic light fields (see Figure 1).

In this paper, we propose a novel learning-based frame-
work to reconstruct high-angular-resolution light fields on
an epipolar plane image (EPI). We indicate that by taking
advantage of the special structure of the EPI, the light field
reconstruction can be effectively modeled as learning-based
angular detail restoration on this 2D structure. Compared
with the sub-aperture images, the light field data share sim-
ilar properties in the EPI domain, e.g., the EPI of microscope
light field data (shown in Figure 1) has a similar structure
as EPIs of macroscopic scenes (shown in Figure 8).

We further indicate (see Sec. 3) that the main problem in
direct reconstruction on the EPI involves the information
asymmetry between the spatial and angular dimension,
where the high-frequency portion in the angular dimensions
is damaged by undersampling. This information asym-
metry will cause ghosting effects when the light field is
directly super-resolved in the angular dimensions on the
EPI [12], [13]. To suppress the ghosting effect caused by
this information asymmetry and simultaneously utilizing
the spatial and angular information, we instead propose a
“blur-restoration-deblur” framework on the EPI. First, in the
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Fig. 1. Comparison of light field reconstruction results on Stanford
microscope light field data Neurons 20× [14] using 3×3 input views. The
proposed learning-based EPI reconstruction produces better results in
this challenging case.

“blur” step, we balance the information by extracting the
spatial low-frequency components of the EPI. We implement
this step by convolving each EPI slice with a selected blur
kernel. Due to the coupling relationship between the spatial
and angular dimensions in the EPI [12], [13], the “blur”
step is equal to an anti-aliasing processing in the angular
dimension. Then, in the “restoration” step, we apply a CNN
to restore the angular detail of the EPI damaged by the
undersampling. In this step, at least three views are used
in each angular dimension to provide sufficient information
for the restoration. Finally, the “deblur” step is performed to
recover the spatial detail suppressed by the EPI blur using
a non-blind deblur operation.

Compared with state-of-the-art approaches that di-
rectly use sub-aperture images to generate novel views,
our framework demonstrates better performance, espe-
cially on light fields containing complex occlusion regions,
non-Lambertian surfaces and even challenging microscope
scenes. Figure 1 shows a comparison against a current state-
of-the-art approach by Kalantari et al. [8] on the Neurons
20× case from the Stanford microscope light field data [14].
The method by Kalantari et al. [8] results in blur in the
occluded regions, whereas the proposed approach produces
reasonable results even in this challenging case.

In summary, the contributions of this paper are as fol-
lows:

• We take advantage of the clear texture structure of
the EPI in the light field data and combine it with
deep learning technique to super-resolve light field
in the angular dimensions;

• We reveal that the main problem in light field re-
construction using angularly sparsely input is the
information asymmetry in the EPI. We therefore con-
tribute a novel “blur-restoration-deblur” framework
on EPI to address this problem. Extensive exper-
iments on various light fields containing complex
occlusion regions, non-Lambertian surfaces and even

challenging microscope scenes have validated the
efficiency of the proposed framework;

• We show further applications including depth en-
hancement using reconstructed high angular res-
olution light field, unstructured light field super-
resolution and depth assisted novel view rendering.

A preliminary version of this paper appeared in [15],
which mainly introduced the “blur-restoration-deblur”
framework for light field reconstruction. The present work
mainly makes the following additional contributions com-
pared with the preliminary version. First, we analyze the
information asymmetry of the EPI and demonstrate the
resulting ghosting effects in the Fourier domain. In addi-
tion, the efficacy of the proposed “blur-restoration-deblur”
framework is also validated in the Fourier domain. Sec-
ond, in addition to the application for depth enhance-
ment shown in the preliminary version, we extend the
proposed framework to additional applications including
interpolation for unstructured input such as unstructured
light fields. Third, we present a novel rendering scheme
that seamlessly combines the proposed “blur-restoration-
deblur” framework and depth information to address the
interpolation with large disparity. This application inherits
the rendering capability of handling large disparity from
depth-image-based rendering techniques as well as the ro-
bustness to depth uncertainties, occlusion regions and non-
Lambertian surfaces from the proposed framework. Fourth,
an in-depth analysis on the merits of the learning-based
reconstruction using EPIs is presented. The source code of
this paper has been made public.

2 RELATED WORK

The main obstacle in light field imaging is the trade-
off between spatial and angular resolution due to limited
sensor resolution. Super-resolution techniques to improve
spatial and angular resolution have been studied by many
researchers [6], [16], [17], [18], [19]. In this paper, we mainly
focus on approaches for improving the angular resolution
of the light field.

2.1 Light field view synthesis

Zhang et al. [11] proposed a phase-based approach using a
micro-baseline stereo pair. They applied a disparity (depth)-
assisted phase-based synthesis strategy to integrate the dis-
parity information into the phase term when warping the
input image to the novel view. However, their method was
specifically designed for a micro-baseline stereo pair and
causes artifacts in the occluded regions when extrapolating
novel views. Zhang et al. [20] described a patch-based ap-
proach for various light field editing tasks. In their work,
the input depth map is decomposed into different depth
layers and presented to the user to achieve the editing goals.
However, these approaches rely heavily on the quality of
the depth maps, which tends to fail in occluded, as well as
glossy and specular, regions; thus, such approaches often
fail to produce promising results.

Alternatively, some studies are based on sampling and
consecutive reconstruction of the plenoptic function. For
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densely sampled light fields in which the disparity be-
tween the neighboring views does not exceed 1 pixel, novel
views can be directly rendered by ray interpolation [1]. For
sparsely sampled light fields, a reconstruction in Fourier
domain has been investigated in some studies. Levin and
Durand [21] proposed a linear view synthesis approach
using a dimensionality gap light field prior to synthesize
novel views from a set of images sampled with a circular
pattern. Shi et al. [10] considered light field reconstruction
as an optimization for sparsity in the continuous Fourier
domain. Their work sampled a small number of 1D view-
point trajectories formed by a box and 2 diagonals to recover
the full light field. However, these methods require the
light field to be captured in a specific pattern, which limits
its practical uses. Didyk et al. [22] used the phase infor-
mation from a complex steerable pyramid decomposition
to synthesize novel views with a small displacement; for
large displacements, only low-frequency components can be
reconstructed.

2.2 Light field EPI structure
By taking advantage of the EPI structure, Wanner and
Goldluecke [18] employed the structure tensor of an EPI
to perform fast and robust local disparity estimation; then,
a TV-L1 optimization scheme is applied to smooth the local
result. Based on Wanner and Goldluecke’s work, a certainty
map was proposed to enforce visibility constraints on the
initial estimated depth map in [23]. However, when imple-
menting angular super-resolution, Wanner and Goldluecke
[18] fell back into the sub-aperture image space and warped
the input images to synthesize novel views based on the
disparity information. In contrast, Vagharshakyan et al. [24]
considered the angular super-resolution as an inpainting
problem on the EPI, and the angular aliasing could be
suppressed in the Fourier domain. They therefore utilized
an adapted discrete shearlet transform to reconstruct the
light field from a sparse sampled light field. However, the
reconstruction exhibited poor quality in the border regions,
resulting in a reduction of angular extent. Moreover, high-
frequency components in the EPI are also lost when using a
discrete shearlet to suppress high-frequency leakage caused
by angular aliasing.

2.3 Learning-based methods
Recently, learning-based techniques have been explored for
light field reconstruction. Cho et al. [25] adopted a sparse-
coding-based (SC) method to reconstruct light fields using
raw data. They generate image pairs using Barycentric in-
terpolation. Yoon et al. [6] trained a deep neural network for
spatial and angular super-resolution. However, the network
uses pairs of images to generate a novel view between them;
thus, the network underused the potential of the full light
field. Wang et al. [26] proposed several CNN architectures,
one of which was developed for the EPI slices; however,
the network is designed for material recognition, which is
different from the EPI restoration task.

In addition, some studies on maximizing the quality
of synthesized views that are based on CNNs have been
presented. Flynn et al. [7] proposed a deep learning method
to synthesize novel views using a sequence of images with
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Fig. 2. An illustration of EPI upsampling results. (a) The input low-
angular-resolution EPI, where d = 4 pixels is the disparity between
the neighboring views. See the angular aliasing effects in the low-
angular-resolution EPI; (b) Straightforward CNN-based angular super-
resolution will cause aliasing in the EPI, leading to ghosting effects in the
reconstructed light field; (c) The result after using EPI blur (on the spatial
dimension) and bicubic interpolation (on the angular dimension); (d) The
final high-angular-resolution EPI produced by the proposed framework;
(e) The ground truth high-angular-resolution EPI.

wide baselines. Kalantari et al. [8] used two sequential
convolutional neural networks to model depth and color
estimation simultaneously by minimizing the error between
synthesized views and ground truth images. However, in
that study, the network is trained using a fixed sampling
pattern (four corner views), which greatly limits its general-
izability. Although the proposed framework applies at least
three views in each angular dimension (limited by the initial
bicubic interpolation), our approach is suitable for inputs
with different degrees of sparsity. In addition, the approach
results in ghosting artifacts in the occluded regions and fails
to handle certain challenging cases.

3 PROBLEM ANALYSIS AND FORMULATION

For a 4D light field L(x, y, s, t), where x and y are the spatial
dimensions and s and t are the angular dimensions, a 2D
slice can be acquired by gathering horizontal lines with
fixed y∗ along a constant camera coordinate t∗, denoted
as Ey∗,t∗(x, s). This 2D slice is called an epipolar plane
image (EPI). The low-angular-resolution EPI EL is a down-
sampled version of the high-angular-resolution EPI EH :

EL = EH ↓, (1)

where ↓ denotes the down-sampling operation. Our task
is to find an inverse operation F that can minimize the
error between the reconstructed EPI and the original high-
angular-resolution EPI:

F̂ = min
F
||EH − F (EL)||. (2)

For a densely sampled light field, where the disparity
between the neighboring views does not exceed 1 pixel,
the angular sampling rate satisfies the Nyquist sampling
criterion (the details of this deduction can be found in [12],
[13]). One can reconstruct such a light field based on the
plenoptic function; however, for light fields sampled under
the Nyquist sampling rate in the angular dimensions, the
disparity is always larger than 1 pixel (see Figure 2(a)). This
undersampling of the light field destroys the high-frequency
components in the angular dimension, whereas the spatial
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Fig. 3. The proposed “blur-restoration-deblur” framework for light field
reconstruction on an EPI.

information is complete. This information asymmetry be-
tween the angular and spatial information causes aliasing
effects in the EPI, which will be further aggravated if the
angular resolution is directly super-resolved (see Figure
2(b)). For example, in Figure 2(e), the black line in the
ground truth EPI is continuous, whereas the directly super-
resolved EPI in Figure 2(b) cannot reconstruct the line in
this case. The aliasing in the EPI will lead to ghosting effects
in the reconstructed light field. Note that this information
asymmetry will always occur when the disparity between
the neighboring views is larger than 1 pixel. A more detailed
analysis of angular aliasing effects in spatial domain can be
found in [27].

To ensure information symmetry between the spatial
and angular dimensions of the EPI, one can decrease the
spatial resolution of the light field to an appropriate level.
However, it is then difficult to recover the novel views
with the original spatial quality, especially when a large
downsampling rate has to be used, as shown in the case
in Figure 2 (a). Rather than decreasing the spatial resolution
of the light field, we extract the low-frequency information
by convolving the EPI with a 1D blur kernel in the spatial
dimension. Due to the coupling relationship between the
spatial and angular dimension [12], [13], the “blur” step
equals an anti-aliasing processing in the angular dimension.
In addition, because the kernel is predesigned, the spatial
details can be easily recovered using a non-blind deblur
operation after the angular restoration processing. Figure
2(c) shows the blurred and upsampled result of the sparse
sampled EPI in Figure 2(a). We now reformulate the recon-
struction of the EPI EL as follows:

f = arg min
f

||EH −Dκf((EL ∗ κ) ↑)||, (3)

where ∗ is the convolution operator, κ is the blur ker-
nel, ↑ is a bicubic interpolation operation that upsamples
the EPI to the desired angular resolution, f represents an
operation that recovers the high-frequency detail in the
angular dimension, and Dκ is a non-blind deblur operator
that uses the kernel κ to recover the spatial detail of the
EPI suppressed by the EPI blur. In our paper, we model
the restoration process f with a CNN to learn a mapping
between the blurred low-angular-resolution EPI and the
blurred high-angular-resolution EPI. The final reconstructed
high angular resolution EPI ÊH = Dκf((EL ∗ κ) ↑).

(a) (b) (c)

Input views Step 1 Step 2

Fig. 4. Hierarchical reconstruction of the full light field. (a) The input light
field is composed of the images marked in red; (b) In Step 1, the EPIs
from the horizontal views (in the left dashed boxes) are used to generate
the novel views marked in green, and the EPIs from the vertical views (in
the right dashed boxes) are used to generate the novel views marked in
blue. (c) In Step 2, the views generated from the Step 1 (in the dashed
boxes) are used to produce the rest of views (marked in yellow).

4 PROPOSED FRAMEWORK

4.1 Overview
The EPI is the building block of a light field and contains
both the angular and spatial information. We take advan-
tage of this characteristic to model the reconstruction of
the sparsely sampled light field as learning-based angular
information restoration on the EPI (Equation 3). To avoid
information asymmetry, we propose a “blur-restoration-
deblur” framework, which is shown in Figure 3.

In the first “blur” step, we extract the spatial low-
frequency information of the EPI using EPI blur (see Figure
3(a)). We then upsample the EPI to the desired angular
resolution using bicubic interpolation in the angular di-
mension. Then, in the “restoration” step, we apply a CNN
to restore the details of the EPI in the angular dimension
(see Figure 3(b)). The network architecture is similar to that
in [28]. The main difference is that we apply a residual-
learning method to predict only the angular details of the
EPI. The network details are presented in Sec. 4.3. In the final
“deblur” step, the spatial details of the EPI are recovered
through a non-blind deblur operation [29] (see Figure 3(c)),
and the output EPIs are applied to reconstruct the final
high-angular-resolution light field. It should be noted that
the CNN is trained to restore the angular details that are
damaged by the undersampling of the light field rather than
the spatial details suppressed by the EPI blur. An alternative
approach is to model the deblur operation into the CNN;
however, using that approach, the network will inevitably
be deeper, slower to converge and harder to tune, making it
more difficult to produce good results. Comparatively, the
non-blind deblur is substantially more suitable to the task
because the kernel is known.

To obtain the full light field using the sparsely sampled
light field, we adopt a hierarchical reconstruction strategy
(as illustrated in Figure 4). In Step 1 (Figure 4(b)), the input
light field (views marked in red in Figure 4(a)) is used to
produce a part of novel views. In this step, the EPIs from
the horizontal views are used to generate the novel views
marked in green, and the EPIs from the vertical views are
used to generate the novel views marked in blue. In Step 2
(Figure 4(c)), the images generated from the Step 1 (marked
in blue) are applied to produce the rest of views (marked
in yellow) in the final high angular resolution light field.
Alternatively, one can use the images marked in green (in
Figure 4(b)) to produce the the rest of the views; however,
we empirically found that the selection of the input images



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER 2017 5

in the Step 2 has a negligible influence on the final results.
We therefore apply the former method in our experiments.
The EPI reconstruction in each step is performed by using
the “blur-restoration-deblur” framework.

4.2 Low-frequency extraction based on EPI blur

To extract the low frequencies of the EPI from only the
spatial dimension, we define the blur kernel in 1D space
rather than defining a 2D image blur kernel. The follow-
ing candidates are considered when extracting the low-
frequency part of the EPIs: the sinc function, the spatial
representation of a Butterworth low-pass filter of order 2
and the Gaussian function. The spatial representations of
the filters are as follows:

κs(x) = c1sinc(x/(2|σ|)),
κb(x) = c2e

−|x/σ|(cos(|x/σ|) + sin(|x/σ|)),
κg(x) = c3e

−x2/(2σ2),

(4)

where c1, c2 and c3 are scale parameters, and σ is a shape
parameter. In our paper, the kernels are discretized at the
integer coordinate and limited to a finite window, i.e.,
x ∈ [−4σ, 4σ]. The kernel size is determined by the largest
disparity (e.g., for the light field with the largest disparity of
4 pixels, the shape parameter σ = 1.5, and the kernel size is
13). The scale parameters are used to normalize the kernels.

We evaluate these three kernels based on the following
two principles: the final deblurred result must show visual
coherency with the ground truth EPI, and the mean squared
error (MSE) between the blurred low-angular-resolution EPI
and the blurred ground truth EPI is as minimal as possible:

κ̂ = min
κ

1

n

n∑
i=1

||(E(i)
L ∗ κ) ↑ −E(i) ∗ κ||2, (5)

where i is the index of the EPIs, n is the number of EPIs, EL
represents the low-angular-resolution EPIs, and E represents
the ground truth high-angular-resolution EPIs. We evaluate
the kernels on the Stanford Light Field Archive [30], and the
errors between the processed (blurred and upsampled) EPIs
and the blurred ground truth EPIs are 0.153, 0.089 and 0.061
for the sinc, Butterworth and Gaussian kernels, respectively.
The sinc function represents an ideal low-pass filter in the
spatial dimension, and the low frequencies can pass through
the filter without distortion. However, this ideal low-pass
filter causes ringing artifacts in the EPIs. The Butterworth
kernel generates imperceptible ringing artifacts, whereas the
Gaussian ensures that no ringing artifacts exist. Based on
this observation and the numerical evaluation, the Gaussian
function is selected to be the kernel for the EPI blur.

4.3 Detail restoration based on CNN

For CNN-based image restoration, Dong et al. [28] proposed
a network for single image super-resolution named SRCNN,
in which a high-resolution image is predicted from a given
low-resolution image. Kim et al. [31] improved on that work
using a residual network with a deeper structure. Inspired
by those pioneers, we design a residual network with three
convolution layers to restore the angular detail of the EPIs.

L1 L2 L3

64 32 Residual

5×55×59×9

Output EPIInput EPI

Fig. 5. The proposed detail restoration network is composed of three
layers. The first and second layers are followed by a rectified linear
unit (ReLU). The final output of the network is the sum of the predicted
residual (detail) and the input.

4.3.1 CNN architecture
The architecture of the detail restoration network is outlined
in Figure 5. Consider an EPI that is convolved with the blur
kernel and up-sampled to the desired angular resolution,
denoted as E′L for short. The desired output EPI f(E′L) is
then the sum of the input E′L and the predicted residual
R(E′L):

f(E′L) = E′L +R(E′L). (6)

The network for the residual prediction consists of three
convolution layers. The first layer contains 64 filters of size
1 × 9 × 9, where each filter operates on a 9 × 9 spatial
region across 64 channels (feature maps) and is used for
feature extraction. The second layer contains 32 filters of
size 64× 5× 5 and is used for non-linear mapping. The last
layer contains 1 filter of size 32×5×5 and is used for detail
reconstruction. Both the first and second layers are followed
by a rectified linear unit (ReLU). Due to the limited angular
information of the light field used as the training dataset, we
pad the data with zeros before every convolution operation
to maintain the input and output as the same size.

We apply this residual learning method for the following
reasons. First, the undersampling in the angular dimension
damages the high-frequency portion (detail) of the EPIs;
thus, only those details need to be restored. Second, ex-
tracting these details prevents the network from having to
consider the low-frequency part, which would be a waste of
time and result in reduced accuracy.

4.3.2 Training details
The desired residuals are R = E′ − E′L, where E′ are the
blurred ground truth EPIs and E′L are the blurred and
interpolated low-angular-resolution EPIs. Our goal is to
minimize the mean squared error 1

2 ||E
′−f(E′L)||2. However,

due to the residual network that we use, the loss function is
now formulated as follows:

L =
1

n

n∑
i=1

||R(i) −R(E′(i)L )||2, (7)

where n is the number of training EPIs. The output of the
network R(E′L) represents the restored details, which must
be added back to the input EPI E′L to obtain the final high-
angular-resolution EPI f(E′L).

We use the Stanford Light Field Archive [30] (captured
using a gantry system) as the training data. The blurred
ground truth EPIs are decomposed into sub-EPIs of size
17 × 17 with stride of 14. To avoid overfitting, we adopted
data augmentation techniques [32], [33] that include flip-
ping, downsampling the spatial resolution of the light field
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Fig. 6. (a) A densely sampled EPI that contains four lines of different
slopes. The disparity is no greater than 1 pixel. (b) The Fourier spectrum
of the EPI in (a), where the lines in (a) are marked with arrows in
their corresponding colors. Note that the Fourier spectrum of the green
line is occluded by the Ωu-axis. (c) The light field is downsampled
in the angular dimensions, producing an angularly undersampled EPI.
The undersampling generates copies of the Fourier spectrum, where
one copy is indicated by a black arrow. (d) Direct CNN-based super-
resolution causes high-frequency leakage from the copies. The band-
limited filter shown in the black dashed box can only reconstruct light
field to a certain depth. The color bar on the right side of (b) shows the
power range of the Fourier spectrum after taking the logarithm.

as well as adding Gaussian noise. To avoid the limitations of
a fixed angular up-sampling factor, we use a scale augmen-
tation technique. Specifically, we downsample some EPIs
with a small angular extent by a factor of 4 and the desired
output EPIs by a factor of 2; then, we upsample them to
the original resolution. The network is trained by using the
datasets downsampled by both a factor of 2 and a factor of
4. We use the cascade of the network for the EPIs that are
required to be up-sampled by a factor of 4. In practice, we
extract more than 8e6 examples, which is sufficient for the
training. We select the mini-batches of size 64 as a trade-off
between speed and convergence.

In the paper, we followed the conventional methods of
image super-resolution to transform the EPIs into YCbCr
space: only the Y channel (i.e., the luminance channel)
is applied to the network. This is because the other two
channels are blurrier than the Y channel and, thus are less
useful in the restoration [28].

To improve the convergence speed, we adjust the learn-
ing rate consistently with the increasing of the training
iteration. The number of training iterations is 8 × 105. The
learning rate is set to 0.01 initially and decreased by a factor
of 10 every 0.25× 105 iterations. When the number of train-
ing iterations is 5.0 × 105 , the learning rate is decreased to
0.0001 in two reduction steps. We initialize the filter weight
of each layer using a Gaussian distribution with zero mean
and standard deviation 1e−3. The momentum parameter is
set to 0.9. Training takes approximately 12 hours on a GTX
960 GPU (Intel CPU E3-1231 running at 3.40 GHz with 32
GB of memory). The training model is implemented using
the Caffe package [34].
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Fig. 7. (a) The Fourier spectrum of the undersampled EPI after the “blur”
step, where the high-frequency copies are efficiently suppressed. (b)
The Fourier spectrum of the EPI after the “restoration” step. Compared
with the Fourier spectrum in (a), the high-frequency components are
restored, while the high copies that lead to aliasing are remained un-
changed. (c) The Fourier spectrum of the EPI after being processed
by the entire framework. (d) The super-resolved EPI produced by the
proposed framework.

5 FOURIER ANALYSIS

In this section, we further analyze the proposed “blur-
restoration-deblur” framework in the Fourier domain. In
the following, we will show how angular undersampling
influences the Fourier spectrum of an EPI [35], [36], explain
why we apply the “blur” step to remove the spatial high-
frequency components of an EPI, and demonstrate the per-
formance of the proposed framework in the Fourier domain.

Consider a simple scene composed of four points located
at different depths. For an appropriately sampled light field,
the resulting EPI contains four lines of different slopes,
where each of the disparities does not exceed 1 pixel (as
shown in Figure 6(a)). Figure 6(b) shows the Fourier spec-
trum of the EPI, where the angles of intersection with the
Ωu-axis are determined by the depths of the objects in the
scene. In Figure 6(b), we mark the Fourier spectrum of each
line in Figure 6(a) with an arrow in its corresponding color.

We simulate the sparsely sampled light field in the
angular domain by downsampling the light field in the
angular dimensions, generating an angularly undersampled
EPI whose disparity falls outside the one-pixel range. The
sampling weakly influences on the point with a small
disparity. However, for points with a large disparity, the
sampling destroys high-frequency details in the angular
dimension, producing copies of the Fourier spectrum, as
shown in Figure 6(c). Straightforward upsampling or CNN-
based super-resolution will cause high-frequency leakage
from the other copies [37] (shown in Figure 6(d)), which
further aggravates the angular aliasing in the EPI, as shown
in Figure 2(b).

To overcome the aliasing in the EPI, Stewart et al. [36]
applied a band-limited filter to reconstruct a light field in
the Fourier domain. The filter preserves certain frequency
components and simultaneously removes high-frequency
leakage by changing the shape of the filter (shown in the
black dashed box in Figure 6(d)). However, Liang and
Ramamoorthi [38] indicated that the filter is depth depen-
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Fig. 8. Comparison of the proposed approach against other methods on the real-world scenes. The results show the ground truth images, error
maps of the synthesized results in the Y channel, close-up versions of the image portions in the blue and yellow boxes, and the EPIs located at the
red line shown in the ground truth view. The EPIs are upsampled to an appropriate scale in the angular dimension for better viewing. The lowest
image in each block shows a close-up of the portion of the EPIs in the red box.

dent, and simply reshaping the filter cannot be used to
reconstruct light field in all depthes of field. Instead, in the
proposed “blur-restoration-deblur” framework, we adopt a
novel learning-based method which is able to reconstruct an
EPI in a large disparity range without introducing aliasing
effects.

Specifically, we first balance the information between the
spatial and angular information by applying a “blur” step.
Unlike the band-limited filter described above, we use a
simple 1D Gaussian kernel whose kernel size depends on
the highest depth (disparity) of the light field. This “blur”
step removes the high-frequency components in the spatial
dimension. Figure 7(a) shows the Fourier spectrum of the
blurred undersampled EPI. Compared with the Fourier
spectrum of the undersampled EPI shown in Figure 6(c),
the copies lying in the high-frequency regions are effectively
suppressed. The blurred EPI is upsampled to the desired
angular resolution using bicubic interpolation.

Then, the CNN-based “restoration” step is performed to
restore the angular details. Figure 7(b) shows the Fourier
spectrum of the EPI after the “restoration” step. From the
perspective of the Fourier spectrum, the CNN is trained to
restore the high-frequency components rather than the high-

frequency copies that lead to aliasing.
The “deblur” step using the selected Gaussian kernel is

adopted to recover the high-frequency components in the
spatial dimension, which is an inverse operation with re-
spect to the “blur” step. Figure 7(c) and (d) show the Fourier
spectrum and the EPI, respectively, after being processed
by the entire “blur-restoration-deblur” framework. Due to
the removal of the high-frequency copies in the Fourier
spectrum, the EPI is finally super-resolved without aliasing.

6 EVALUATION

In this section, we evaluate the proposed framework com-
pared with the approach proposed by Kalantari et al. [8]
and typical depth-based approaches on several datasets
including real-world scenes, microscope light field data and
synthetic scenes. For the typical depth-based approaches,
we first use current state-of-the-art approaches (Wang et al.
[39], Jeon et al. [40]) to estimate the depth; then we warp
the input images to the novel view and blend by weighting
the warped images [42]. We also evaluate each step in the
framework, including the performance without the “blur-
deblur” steps (implemented by directly upsampling using
learning-based methods) or without the “restoration” step
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Fig. 9. Comparison of the proposed approach against other methods on the microscope light field datasets. The results show the ground truth (/
reference images), synthesized results, close-up versions, and the EPIs located at the red line shown in the ground truth view.

TABLE 1
Quantitative results (PSNR / MS-SSIM) of reconstructed light fields on

the real-world scenes. Results from a single CNN is also listed.

30 scenes Reflective29 Occlusion16
Wang et al. [39] 33.03/0.9766 28.97/0.9613 25.94/0.9244
Jeon et al. [40] 34.42/0.9841 40.27/0.9946 32.10/0.9830
Kalantari et al. [8] 37.78/0.9912 37.70/0.9798 32.24/0.9842
Bicubic only 34.97/0.9861 40.28/0.9952 32.97/0.9815
FSRCNN only [41] 37.23/0.9901 43.68/0.9961 35.04/0.9848
Our CNN only 37.15/0.9889 44.84/0.9962 35.89/0.9835
Our proposed 41.02/0.9968 46.10/0.9981 38.86/0.9970

(implemented by replacing the learning-based restoration
with bicubic interpolation). The quality of the synthesized
views is measured by the PSNR and MS-SSIM [43] against
the ground truth image. Comparison results are also given

TABLE 2
Quantitative results (PSNR / MS-SSIM) of reconstructed light fields on

the microscope light field datasets.

Neurons 20× Neurons 40×
Wang et al. [39] 17.45/0.7368 13.21/0.7206
Jeon et al. [40] 23.02/0.9338 23.07/0.9092
Kalantari et al. [8] 20.94/0.9169 19.02/0.8847
Our proposed 29.34/0.9741 32.47/0.9901

in the submission video 1.

6.1 Real-world scenes
We evaluate the proposed approach using 30 test scenes
provided by Kalantari et al. [8] that were captured with a
Lytro Illum camera (“30 scenes” for short) as well as two

1. The first submitted video corresponds to the evaluation part
of this paper. Due to the file size limitation, the videos are com-
pressed and shortened. High quality and full videos are available at:
http://www.liuyebin.com/lfepi/LFreconstruction.html
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TABLE 3
Quantitative results (PSNR / MS-SSIM) of the reconstructed light fields on the synthetic scenes of the HCI datasets. The “restoration” step can
also adopt other learning-based approaches, such as SC [44] and FSRCNN [41]. The bicubic serves as a baseline approach for comparison.

Buddha Mona
Angular resolution 3 × 3 5 × 5 3 × 3 5 × 5
Wang et al. [39] 33.41/0.9740 44.15/0.9984 30.74/0.9720 43.69/0.9990
Jeon et al. [40] 41.19/0.9958 44.06/0.9981 40.95/0.9968 42.67/0.9982
Kalantari et al. [8] 34.05/0.9788 34.51/0.9813 32.53/0.9640 32.59/0.9800
Ours/bicubic 34.71/0.9782 39.23/0.9931 38.21/0.9870 42.66/0.9964
Ours/SC [44] 41.67/0.9953 41.79/0.9962 42.39/0.9951 44.40/0.9979
Ours/FSRCNN [41] 42.60/0.9960 46.27/0.9981 43.52/0.9954 49.75/0.9992
Our proposed 43.20/0.9963 46.42/0.9987 44.37/0.9977 51.07/0.9995

representative scenes, Reflective 29 and Occlusion 18, from
the Stanford Lytro Light Field Achieve [45]. We use 3 × 3
views to reconstruct 7×7 light fields. The running times for
each step are as follows: the “blur” step takes 2.42 × 10−4

seconds per view, the “restoration” step takes 10.10 seconds
per view and the “deblur” step takes 4.46 seconds per view.
The hardware configuration is the same as that described in
Section 4.3.2, but GPU is not involved in each step.

Table 1 lists the numerical results on the real-world
datasets. The PSNR values are averaged over the 30 scenes.
The CNNs in the approach by Kalantari et al. [8] are
designed to minimize the error between the synthesized
views and the ground truth views 2. Therefore, they achieve
better performance than other depth-based methods when
applied to those common scenes. However, their networks
were specifically trained for Lambertian regions; thus, they
tend to fail on the reflective surface in the Reflective 29 case.
Among these real-world scenes, our proposed framework is
significantly better than other approaches. We also compare
the results produced by using single CNNs without the
“blur-deblur” framework (please see Section 5 for the de-
tailed discussion), including our network (denoted as “Our
CNN only”) and FSRCNN [41] (been fine-tuned on EPIs,
denoted as “FSRCNN only”). The quantitative results show
that a single CNN produces lower quality light fields than
those using the complete framework.

Figure 8 depicts some of the results such as the Leaves
from the 30 scenes as well as Reflective 29 and Occlusion 16
scenes in the Stanford Lytro Light Field Archive. The Leaves
case includes some leaves with complex structures in front
of a street. The case is challenging due to the overexposure
of the sky and the occlusion around the leaves shown in
the blue box. The results by Wang et al. [39] and Jeon et
al. [40] show blurring artifacts around the leaves, and the
result by Kalantari et al. [8] contains ghosting artifacts. The
Reflective 29 case is a challenge scene because of the reflective
surfaces of the pot and the kettle. The result by Wang et
al. [39] shows blurring artifacts around the pot and the
kettle. The approaches by Jeon et al. [40] and Kalantari et al.
[8] produce better results, but the reconstructed light fields
show discontinuities in terms of the EPIs. The Occlusion 16
case contains complicated occlusions that are challenging
for view synthesis; consequently, their results are quite
blurry around occluded regions such as the branches and

2. To follow the configuration of their four corner images input, we
divide the input light field into several blocks accordingly, e.g., a 3 by
3 input light field is divided into four light fields, where each contains
2 by 2 sub-aperture images for the angular super-resolution.

leaves. As demonstrated in the error maps and the close-
up images of the results, the proposed approach achieves a
high performance in terms of the visual coherency of both
the synthesized views and the EPIs.

6.2 Microscope light field dataset

In this subsection, the Stanford Light Field microscope
datasets [14] and the camera-array-based light field micro-
scope datasets provided by Lin et al. [46] are tested. These
datasets include challenging light fields such as those con-
taining complicated occlusion relations and translucency.
The numerical results are tabulated in Table 2, and the
reconstructed views are shown in Figure 9. We reconstruct
7× 7 light fields using 3× 3 views in the Neurons 40× case,
and 5 × 5 light fields using 3 × 3 views in the Neurons 40×
case. For the Worm and Cells cases, 5 × 5 views are used to
produce 9× 9 light fields3.

The Neurons 40× case shows a Golgi-stained slice of
rat brain, which contains complicated occlusion relations.
The result by Wang et al. [39] is quite blurry due to the
errors in the estimated depth. Although the result by Jeon
et al. [40] has a higher PSNR value, it fails to estimate the
depth of the scene, which is visible in the EPI. The result
produced by Kalantari et al. [8] has a higher quality in
terms of the visual coherency. However, the result contains
blurring and tearing artifacts in the occluded regions. The
Worm and Cells cases are more simply structured but contain
transparent objects such as the head of the worm. The depth-
based approaches are unable to estimate accurate depth
maps in the translucent regions, which results in tearing
and ghosting artifacts. Among these challenging cases, our
approach produces plausible results in both the occluded
and translucent regions.

6.3 Synthetic scenes

We use the synthetic light field data from the HCI datasets
[47] in which the spatial resolution is the same as the original
inputs (768 × 768). The angular resolution of the output
light field is set to 9 × 9 for comparison with the ground
truth images, although we are able to produce light fields
of denser views. We use input light fields with different de-
grees of sparsity (3×3 and 5×5) to evaluate the performance
of the proposed framework for different upsampling scale

3. The quantitative evaluation is not performed on the Worm and
Cells cases because all the ground truth views are used as input.
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Fig. 10. Depth estimation results using the reconstructed light fields. The
arrows in the third row indicate the depth errors caused by the artifacts
of the reconstructed light fields.

factors. The results show that our framework is more com-
petent for inputs with different degrees of sparsity. Table 3
shows a quantitative evaluation of the proposed approach
on the synthetic dataset compared with other methods. The
approach by Kalantari et al. [8] produces a lower quality
than the other depth-based approaches because their CNNs
are specifically trained on real-world scenes. The proposed
approach achieves the highest PSNR values compared to the
depth-based methods. In addition, we replace our residual
network with bicubic interpolation as a baseline approach to
demonstrate the importance of the learning-based ”restora-
tion” step. The results show that the reconstruction benefits
from the learning-based “restoration” step (such as SC [44],
FSRCNN [41] and the proposed network), especially when
using a sparser input.

7 EXTENDED APPLICATIONS

We implement three different applications based on
the proposed “blur-restoration-deblur” framework: depth
enhancement using reconstructed high-angular-resolution
light fields, interpolation for unstructured input and depth-
assisted rendering.

7.1 Application for depth enhancement

This application demonstrates that the reconstructed high-
angular-resolution light field can be applied to enhance
the depth estimation. Both synthetic scenes and real-world
scenes are used for the demonstration. We use the approach
by Wang et al. [39] to estimate the depth of the scenes.

For synthetic scenes, Table 4 gives the RMSE values of
the depth estimation results from using the 3 × 3 light

TABLE 4
RMSE values of the estimated depth using the approach by Wang et al.

[39] on HCI datasets.

Buddha Mona Horses
Input 3 × 3 views 0.2926 0.2541 0.3757
Kalantari et al. [8] 0.1576 0.0829 0.1212
Ours 0.0401 0.0517 0.0426
GT light fields 0.0393 0.0529 0.0383
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OursMeyer et al. [49]

Ground truth Sun et al. [48]

Fig. 11. Comparison of unstructured light field super-resolution against
the approaches by Sun et al. [48] and Meyer et al. [49]. Basket dataset
courtesy of Yücer et al. [50].

fields, the reconstructed 9 × 9 light fields produced by
Kalantari et al. [8], our reconstructed 9 × 9 light fields and
the ground truth 9× 9 light fields on the HCI datasets [47].
Figure 10 shows the depth estimation results on some real-
world scenes, including the Cars, Reflective 29, Occlusion 16,
and Flowers and plants 12 cases. The results show that our
reconstructed light fields are able to produce more accurate
depth maps that better preserve edge information than the
those produced by Kalantari et al. [8], e.g., the reflective
surface of the red pan in the Reflective 29 case and the
branches in front of the left car in the Cars case. Moreover,
the enhanced depth maps are highly similar to the maps
produced using the ground truth light fields, which once
again demonstrates that the proposed framework is able to
preserve the structure of the reconstructed light fields better
than anther methods.

7.2 Interpolation for unstructured light field

The proposed approach is a depth-free framework that
restores the angular details based on CNN without the need
for geometry calibration or depth estimation. Therefore, our
framework is potentially capable of handling unstructured
input such as an unstructured light field (3D light field). The
interpolated unstructured light field can be further applied
to improve the accuracy of the reconstructed 3D model
[50]. In this section, we compare the proposed framework
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Fig. 12. Pipeline of the proposed depth-assisted rendering approach
using the “blur-restoration-deblur” framework. (a) The input EPI and its
discretized disparity; (b) The input EPI is sheared by each shear value,
thereby constructing a set of sheared EPIs. The regions marked in
green masks are sheared using their corresponding disparity, but other
regions are not; (c) The super-resolved EPIs using the proposed “blur-
restoration-deblur” framework; (d) The final high-angular-resolution EPI
is obtained using the inverse shear and blending operation; (e) Close-up
of the super-resolved EPIs in (c).

against the optical flow-based approach by Sun et al. [48]
and the phase-based interpolation approach proposed by
Meyer et al. [49]. To obtain the interpolated views based
on the computed optical flow maps, the DIBR technique
proposed by Riechert et al. [51] is applied.

Unlike common light fields that are obtained by care-
fully calibrated camera(s), an unstructured light field is
captured, e.g., by a hand-held commodity camera [52] or
unsynchronized camera arrays [53]. Therefore, ordinary an-
gular super-resolution methods that synthesize novel views
based on depth estimation usually fail to yield reasonable
results. On the contrary, the proposed framework implicitly
reconstructs a light field by restoring the angular details
on the EPI, and thus, it has the capacity to super-resolve
unstructured light fields.

We demonstrate this application using the Basket case
from the dataset provided by Yücer et al. [50] (see Figure 11).
The original light field contains 49 views, of which 25 views
are used as input for the super-resolution. The averaged
PSNR values are 33.82 for the approach by Sun et al. [48],
40.43 for the approach by Meyer et al. [49] and 41.60 for the
proposed framework. Figure 11 shows interpolation results
of the 20th frame. The results by Sun et al. and Meyer et
al. [49] introduce structure discontinuity (see the close-up
version of the EPI) because only two views are used for
each interpolation.

7.3 Depth-assisted rendering

We further extend the proposed approach for novel view
rendering using multi-view input with an estimated depth
(disparity) map. By exploiting the disparity information, our
proposed method can achieve high-quality view rendering
for the cases with larger disparities (up to 40 pixels). Unlike
existing depth-image-based rendering (DIBR) techniques,
which are extremely sensitive to the disparity quality, our
method only requires a raw disparity map to produce high-
quality rendering results. The proposed novel view render-
ing method also inherits the ability to generate plausible
results in occluded regions, and non-Lambertian surfaces
from the proposed learning-based framework.

As described, the main challenge in reconstructing an
EPI is the information asymmetry, which needed to be
balanced by the “blur” step. However, for an EPI with large
disparity, the size of the blur kernel should be sufficiently
large to remove the high-frequency leakage, which will also
influence the image quality. Alternatively, we shear it to
an appropriate disparity range with the assistance of its
corresponding disparity map such that the proposed “blur-
restoration-deblur” framework can be applied.

Implementation. Consider an EPI EL (where L denotes
low angular resolution) and its discretized disparity D (see
Figure 12(a)). The collection of shear values is equivalent to
the collection of discretized disparity values in D, denoted
as {D1, D2, ..., DN} (N is the number of shear values). We
first shear the EPI by each shear value, thereby constructing
a set of sheared EPIs {S(ED1

L ), S(ED2

L ), ..., S(EDN

L )} (see
Figure 12(b)), where S denotes the shear operation and N
is the number of the discretized disparity values. Then the
proposed “blur-restoration-deblur” framework is applied
to super-resolve the sheared EPIs in the angular dimen-
sion (see Figure 12(c)), generating a set of high-angular-
resolution EPIs {S(ED1

H ), S(ED2

H ), ..., S(EDN

H )}. For regions
sheared by their corresponding disparity (indicated as the
regions marked in green masks in Figure 12(b) and (c)), we
can obtain super-resolved results with the desired quality;
however, other regions are sheared by unbefitting shear
values, therein causing aliasing effects in the corresponding
regions of the super-resolved EPIs. Figure 12(e) shows a
close-up of one of those super-resolved regions. To com-
bine all the best reconstructed regions into the final EPI
EH , we apply the following steps: the super-resolved EPIs
{S(ED1

H ), S(ED2

H ), ..., S(EDN

H )} are first inversely sheared
by the corresponding shear values {D1

α ,
D2

α , ...,
DN

α }, where
α is the super-resolution factor; the processed EPIs, denoted
as {ED1

H , ED2

H , ..., EDN

H }, are then blended using the follow-
ing equation:

EH =

N∑
i=1

EDi

H Wi, (8)

where the weight Wi is equal to 1 for regions sheared by
the corresponding disparity and 0 for other regions. Figure
12(d) shows the final high-angular-resolution EPI EH .

Results. We evaluate the proposed application for depth-
assisted rendering on the Middleburry stereo datasets [54]
and outdoor light fields [55]. For the Middleburry stereo
datasets, we employ the CostFilter [56] for the disparity esti-
mation. In addition, the disparity maps for the outdoor light
fields are taken from [55]. The DIBR techniques proposed
by Riechert et al. [51] and Chaurasia et al. [42] are used as
the baseline methods. Each scene in the Middleburry stereo
datasets contains 7 views, 4 of which are used as input and
the remainder used for comparison. And for the outdoor
light fields, we use 49 views for each scene, 13 of which
are used to reconstruct light fields with original angular
resolution.

Figure 13 shows a visual comparison of the rendered
novel views against the ground truth, and Table 5 offers
the relevant numerical results in terms of disparity qual-
ity (RMSE) and novel view quality (PSNR and MS-SSIM).
Baby1, Bowling2, Moebius, Midd1 and Monopoly are from the
Middleburry stereo datasets [54]. Bikes and Statue are taken
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Fig. 13. Depth-assisted rendering results. The left images show the rendered views (the 4th view for Bowling2 and Midd1 and the 39th view for Bikes
and Statue) and the corresponding EPIs using the proposed approach. The close-up versions of reference disparity maps, ground truth views and
rendered views by Chaurasia et al. [42] and the proposed approach are shown on the right.

TABLE 5
Quantitative results of the disparity map range (pixel) and error (RMSE) and rendered views (PSNR / MS-SSIM). The image rendering results are

averaged on the novel views.

Dataset Baby1 Bowling2 Moebius Midd1 Monopoly Bikes Statue
Disparity map

Disparity range (pixel) 8-23 11-34 11-35 9-33 2-27 0-40 0-24
Disparity error (RMSE) 0.0369 0.0401 0.0473 0.1682 0.1849 - -

Rendered views (PSNR / MS-SSIM)
Riechert et al. [51] 36.56/0.9880 34.19/0.9869 33.06/0.9860 31.18/0.9757 30.99/0.9770 25.65/0.9047 35.57/0.9958
Chaurasia et al. [42] 37.90/0.9914 35.44/0.9907 34.35/0.9910 33.67/0.9808 32.01/0.9881 30.90/0.9612 35.04/0.9965
Ours 40.92/0.9949 38.22/0.9937 38.41/0.9953 38.46/0.9969 40.04/0.9938 35.43/0.9890 36.44/0.9968

from Kim et al. [55]. As we can see from the figure, the
approach by Chaurasia et al. [42] contains ghosting artifacts
in occlusion boundaries (see the close-up in Bowling2 and
Midd1 in Figure 13) and blur artifacts around small struc-
tures (such as the spokes in Bikes and the antenna in Statue
in Figure 13). In addition, due to the extensive textureless
regions in the last two cases (Midd1 and Monopoly), the
stereo matching approach being employed has failed to
produce plausible disparity maps, which greatly affects the
results by DIBR methods, especially the one by Riechert et
al. [51]. However, due to the robustness to disparity noise,
the proposed approach is able to render high-quality views
in both cases. Table 5 also lists the disparity range of each
dataset, showing the good disparity handling ability of the
proposed rendering approach.

8 DISCUSSION AND CONCLUSION

In the following. we will provide an in-depth analysis
on the merits of the learning-based reconstruction using
EPIs. Due to the high-dimensional data in a light field,
the acquisition process suffers from a resolution trade-off.
Relatively speaking, it is a better choice to sacrifice the angle
resolution and obtain more spatial information, which is
also better for the reconstruction of the light field. However,
essentially, the reconstruction is an ill-posed problem to

restore the plenoptic function from a limited collection of
samples, which is typically solved by applying strong prior
information. Therefore, the deep neural networks learned
from massive training data may represent a good solution.

Deep neural networks work well for data sharing sim-
ilar properties with the training data, but they are heav-
ily data dependent. In sub-aperture image space, the data
structures, namely, the appearances of the scenes, could be
very different (e.g., the real-world scenes in Figure 8 and
the microscopy scenes in Figure 9, where even different
microscopy data shows very different appearance). It is
difficult to generalize from such a variety of scenes. Thus,
training a network using sub-aperture images maybe not
the best solution. Fortunately, in the EPI space, even the light
fields of different scenes share strikingly similar EPI struc-
tures because the angular dimension in the EPI records the
information of the same pixel in the 3D space with changing
viewpoint. Therefore, this paper have taken advantage of
the EPI property to achieve high performance light field
angular super-resolution. The light field reconstruction on
the EPI provides a higher capacity in the data structure
term. For the above reasons, the proposed learning-based
framework for light field reconstruction on the EPI achieves
a better performance on various scenes.

In this paper, we have presented a novel “blur-
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Fig. 14. Limitation of reconstructing an input EPI with large disparity. (a)
An input EPI extracted from multi-view stereo data [54], Midd1; (b) Re-
sult produced by Straightforward CNN-based angular super-resolution,
which appears severe angular aliasing effects; (c) Result produced by
the proposed framework. The details are difficult to recover, because
a blur kernel of large size has to be used for anti-aliasing; (d) Result
produced by the proposed depth-assisted rendering approach.

restoration-deblur” framework for light field reconstruction
on EPI and its extended applications. To avoid the aliasing
effects caused by the information asymmetry, the spatial
low-frequency components of the EPI are extracted via an
EPI blur operation and used as input to the network to re-
store the angular details. The non-blind deblur operation is
used to recover the spatial details that are suppressed by the
EPI blur operation. We evaluate the proposed framework on
synthetic scenes, real-world scenes, and some challenging
microscope light field datasets. The experimental results
demonstrate that the proposed framework outperforms
state-of-the-art approaches in occluded and transparent re-
gions and on non-Lambertian surfaces. The results (Table 1
and Table 3) also show that both “blur-deblur” steps and
learning-based “restoration” are important to the proposed
framework. We further show extended applications, includ-
ing depth enhancement using reconstructed high-angular-
resolution light fields, interpolation for unstructured input
and depth-assisted rendering.

In the following, the limitations of the proposed frame-
work that should be overcome in the future work are con-
cluded. The framework adopts at least three views in each
angular dimension for the initial interpolation, and extrap-
olation cannot be handled in the current implementation.
We use EPI blur to extract the spatial low-frequency com-
ponents of the EPI, where the kernel size is determined by
the largest disparity between the input neighboring views.
The non-blind deblur is unable to recover high quality
EPIs when the kernel size is too large (as shown in Figure
14(c)), and the maximum disparity we can handle when
using the proposed “blur-restoration-deblur” framework is
5 pixels. However, in our extended application, we exploit
depth information to handle large disparity data such as
multi-view stereo data (as shown in Figure 14(d)). For
reconstructing an unstructured light field, we assume that
the vertical disparities (perpendicular to the main direction
of the parallax) between the neighboring views are less
than one pixel, because the “blur” and “deblur” steps are
designed to address the disparities in only one direction.

For data degradation in terms of spatial aliasing, the
framework will fail to provide reasonable results when the
frequency of the texture area is higher than the spatial
sampling rate because the framework is not designed for
such input. However, the proposed framework presents a
denoising effect for data degradation in terms of noise,
due to the CNN’s inherent noise suppression capability.
The denoising effect is clearly reflected in the Neurons 20×
(Figure 1) and Neurons 40× (Figure 9) cases, where the

output light field is substantially smoother than the input
light field (see the close-up version).
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