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Spatial-Angular Attention Network for
Light Field Reconstruction
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Abstract—Learning-based light field reconstruction methods
demand in constructing a large receptive field by deepening the
network to capture correspondences between input views. In this
paper, we propose a spatial-angular attention network to perceive
correspondences in the light field non-locally, and reconstruct
high angular resolution light field in an end-to-end manner.
Motivated by the non-local attention mechanism [1], [2], a spatial-
angular attention module specifically for the high-dimensional
light field data is introduced to compute the responses from all the
positions in the epipolar plane for each pixel in the light field, and
generate an attention map that captures correspondences along
the angular dimension. We then propose a multi-scale reconstruc-
tion structure to efficiently implement the non-local attention in
the low spatial scale, while also preserving the high frequency
components in the high spatial scales. Extensive experiments
demonstrate the superior performance of the proposed spatial-
angular attention network for reconstructing sparsely-sampled
light fields with non-Lambertian effects.

Index Terms—Light field reconstruction, deep learning, atten-
tion mechanism.

I. INTRODUCTION

TROUGH capturing both intensities and directions from
sampled light rays, light field achieves high-quality view

synthesis without the need of complex and heterogeneous
information (e.g., geometry and texture). More importantly,
benefited from the light field rendering technology [3], light
field is capable of producing photorealistic views in real-
time, regardless of the scene complexity or non-Lambertian
effect. This high quality rendering usually requires light fields
with disparities between adjacent views to be less than one
pixel, i.e., the so-called densely-sampled light field (DSLF).
However, typical DSLF capture either suffers from a long
period of acquisition time (e.g., DSLF gantry system [3]) or
falls into the well-known resolution trade-off problem, i.e.,
the light fields are sampled sparsely in either the angular [4]
or the spatial domain [5] due to the limitation of the sensor
resolution [6].
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Fig. 1. We propose a spatial-angular attention module embedded in a multi-
scale reconstruction structure for learning-based light field reconstruction. The
network perceives correspondence pixels in a non-local manner, and is able to
produce high quality reconstruction using sparse input. In the bottom results,
the input light fields are upsampled by using nearest interpolation for better
demonstration. Light fields courtesy of Moreschini et al. [15] and Adhikarla et
al. [16].

Recently, a more promising way is the fast capturing of a
sparsely-sampled (angular domain) light field followed by a
direct reconstruction or a depth-based view synthesis [7], [8]
with advanced deep learning techniques. On the one hand,
typical learning-based reconstruction methods [9], [10], [11]
employ multiple convolutional layers to map the low angular
resolution light field to the DSLF. But due to the limited
perceptive range of convolutional filters [12], the networks will
fail to collect enough information among the correspondences
when dealing with large disparities, leading to aliasing effects
in the reconstructed light field. On the other hand, depth-based
view synthesis methods address the large disparity problem
through plane sweep (depth estimation), and then synthesize
novel views using learning-based prediction [7], [13], [14].
However, such methods require depth consistency along the
angular dimension, and thus, often fail to solve the depth
ambiguity caused by the non-Lambertian effects.

In this paper, we propose a Spatial-Angular Attention Net-
work, termed as SAA-Net, to achieve DSLF reconstruction
from a sparse input. The proposed SAA-Net perceives corre-
spondences in the Epipolar Plane Image (EPI) in a non-local
manner, solving the aforementioned non-Lambertian effect and
large disparity in a unified framework (Sec. IV). Specifically,
the SAA-Net is composed by two parts, a spatial-angular
attention module and a U-net backbone. Motivated by the
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non-local attention mechanism in [1], [2], for each pixel in the
input light field, the Spatial-Angular Attention Module (termed
as SAAM for short) computes the responses from all the
positions in its epipolar plane, and produces an attention map
that records the correspondences along the angular dimension,
as shown in Fig. 1 (top). This correspondence information in
the attention map is then applied to guide the reconstruction in
the angular dimension via multiplication and deconvolution.

To efficiently perform the non-local attention, we propose a
convolutional neural network with multi-scale reconstruction
structure. The network follows the basic architecture of the U-
net, i.e., an encoder-decoder structure with skip connections.
The encoder compresses the input light field in the spatial di-
mensions and removes redundancy information for the SAAM.
Rather than simply reconstruct the light field at the end of
the network, we propose a multi-scale reconstruction structure
by performing deconvolution along the angular dimension in
each skip connection branch, as shown in Fig. 1 (top). The
proposed multi-scale reconstruction structure maintains the
view consistency in the low spatial scale while preserving fine
details in the high spatial scales.

For the network training, we propose a spatial-angular
perceptual loss that is specifically designed for the high-
dimensional light field data (Sec. V). Rather than computing
the high-level feature loss [17], [18] by feeding each view
in the light field to a 2D CNN (e.g., the commonly-used
VGG [19]), we pretrain a 3D auto-encoder that considers
the consistency in both the spatial and angular dimensions
of the light field. We demonstrate the superiority of the SAA-
Net by performing extensive evaluations on various light field
datasets. The proposed network presents high-quality DSLF
on challenge cases with both non-Lambertian effects and large
disparities, as illustrated in Fig. 1 (bottom). In summary, we
make the following contributions1:
• A spatial-angular attention module that perceives corre-

spondences non-locally in the epipolar plane;
• A multi-scale reconstruction structure for efficiently per-

forming the non-local attention in the low spatial scale
while also preserving the high frequencies;

• A spatial-angular perceptual loss specifically designed for
the high-dimensional light field data.

II. RELATED WORK

A. Light Lield Reconstruction

First, we will give a brief review on researches of light field
view synthesis (or view synthesis) depending on whether the
depth information is explicitly used.

Depth image-based view synthesis. Typically, these kind
of approaches first estimate the depth of a scene [20], [21],
[22], [23], then warp and blend the input views to synthesize
a novel view [13], [7], [24], [8]. Conventional light field
depth estimation approaches follow the pipeline of stereo
matching [25], i.e., cost computation, cost aggregation (or
cost volume filtering) and post refinement. The main different
is that light field converts the disparity from the discrete

1We will release the source code of this work upon acceptance.

space into a continuous space [26], deriving various depth
cues specifically for a light field, e.g., structure tensor-based
local direction estimation [26], depth from defocus [20], [21].
Also, some learning-based approaches incorporate the depth
estimation pipeline described above with 2D convolution-
based feature extraction, 3D convolution-based cost volume
refinement and depth regression [27], [28] For novel view
synthesis, input views are warped to the novel viewpoints with
sub-pixel accuracy using bilinear interpolation and blended in
different manners, e.g., total variation optimization [26], soft
blending [24] and learning-based synthesis [29].

Recently, researchers mainly focus on the studies for max-
imizing the quality of synthesized views based on the deep
learning technique. Flynn et al. [13] proposed a learning-based
method to synthesize novel views with predicted probabilities
and colors for each depth plane. Kalantari et al. [7] further
employed a sequential network to infer depth (disparity) and
color, and optimized the model via end-to-end training. Shi et
al. [8] developed a convolutional network that fuses low-level
pixels and high-level features in a unified framework. Zhou et
al. [30] introduced a learning-based MultiPlane Image (MPI)
representation that infers a novel view by the alpha blending
of different images. Mildenhall et al. [14] further proposed to
use multiple MPIs to synthesize a local light field.

Reconstruction without explicit depth. These kind of
approaches treat the problem of light field reconstruction as the
approximation of plenoptic function. In the Fourier domain,
the sparse sampling in the angular dimension produces over-
laps between the original spectrum and its replicas, leading
to aliasing effect. Classical approaches [31], [32] consider
a reconstruction filter (usually in a wedge shape) to extract
the original signal while filtering the aliasing high-frequency
components. For instance, Vagharshakyan et al. [33] utilized
an adapted discrete shearlet transform in the Fourier domain
to remove the high-frequency spectra that introduce aliasing
effects. Shi et al. [34] performed DSLF reconstruction as an
optimization for sparsity in the continuous Fourier domain.

In recent years, some learning-based approaches were also
proposed for depth-independent reconstruction [9], [10], [11],
[35]. Zhu et al. [36] proposed an auto-encoder that combines
convolutional layers and convLSTM layer [37]. For explicitly
addressing the aliasing effects, Wu et al. [10] took advantage
of the clear texture structure of the EPI and proposed a
“blur-restoration-deblur” framework. However, when applying
a large blur kernel for large disparities, the approach tends to
fail at recovering the high-frequency details, and thus leading
to the blur effect. Wang [35] further proposed to apply a 3D
CNN that takes a 3D slice as the input. Yeung et al. [11]
directly fed the entire 4D light field into a 4D convolutional
network, and applied a coarse-to-fine model to iteratively
refine the spatial and angular dimensions of the light field.
Wu et al. [38] proposed an evaluation network for EPIs with
different shear amount, termed as sheared EPI structure. In
this structure, the depth information is implicitly used to
select a well reconstructed EPI. However, the performance of
the network is limited due to the finite perceptive field of
the convolutional neurons, especially when handling the large
disparity problem.
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Fig. 2. Analysis of reconstruction quality in terms of the network receptive field and disparity range of the scene. For a scene with small disparities, both
networks (a) with small receptive field (27 × 27 pixels) and (b) with large receptive field (53 × 53 pixels) are able to reconstruct high-quality light field.
However, for a scene with large disparities, network with small receptive field suffers from severe aliasing effects, as shown in (c). While network with large
receptive field can still produce plausible results, as shown in (d). We show the sparely-sampled inputs on the top row and the reconstructed on the bottom.
The receptive field of each network is visualized with green box. The input EPIs are stretched along the angular dimension for better demonstration.

B. Attention Mechanism

Attention was first built to imitate the mechanism of human
perception that mainly focuses on the salient part [39], [40],
[41]. Vaswani et al. [42] indicated that the attention mecha-
nism is able to solve the long term dependency problem even
without being embedded in the backbone of a recurrent or C-
NN. Therefore, the attention mechanism is recently developed
to enabling the non-local perception in the spatial or temporal
dimension [43].

To achieve the feature of non-local perception, Hu et
al. [44] and Woo et al. [45] proposed to use a global pooling
(max-pooling or average-pooling) followed by a multi-layer
perceptron to aggregate the entire information in the spatial
dimension. Tsai et al. [28] introduced an attention module
in the angular dimension to weight the contribution of each
view in a light field. Vaswani et al. [42] proposed to use a
weighted average of the responses from all the positions with
respect to a certain position in the latent space, which is called
self-attention (also known as intra-attention). Alternatively,
Wang et al. [1] achieved the self-attention by using matrix
multiplication between reshaped feature maps, and is termed
as non-local attention. For a high-dimensional task like video
classification, the proposed module reshapes the 4D tensor
(time, height, width and channel) into a 2D matrix. Zhang et
al. [2] further extended this idea into a Generative Adversarial
Network (GAN). Rather than using the non-local attention
mechanism, Wang et al. [46] proposed a parallax attention
module to compute the response across two stereo images.
For each epipolar line in the stereo images (feature maps), the
2D matrices (width and channel) are multiplied to produce
a sparse attention map that implies correspondences. In this
paper, we extend the non-local attention mechanism to high
dimensional light field data. For each pixel in the input 3D
light field, the attention is computed in the 2D epipolar plane,
rather than the epipolar line in [46] or the entire 3D data space
in [1].

III. PROBLEM ANALYSIS

In the following analysis, we empirically show that the
performance of a learning-based light field method is closely
related to the perception range of its neuron (or convolutional
filter), especially when addressing the large disparity problem.
Deep neural network is proved to be a powerfull technique

in solving ill-posed inverse problems [47]. In the light field
reconstruction problem, the performance of a deep neural
network mainly depends on two factors: disparity range of
the scene (input light field) and network structure. Since the
first factor is normally unalterable once the light field is ac-
quired, typical deep learning-based approaches pursue a more
appropriate architecture for higher performance [9], [7], [10],
[11]. Among those deep learning-based approaches, the depth-
based view synthesis methods convert the feature maps into
a physically meaningful depth map, while depth-independent
methods directly map them to novel views. Essentially, both of
two kind of approaches employ convolutional filter to generate
responses (feature maps) between correspondence pixels.

To quantify the measurement of the capability to capture
correspondences, we apply the concept of receptive field
introduced in [12], [48]. The receptive field measures the
number of pixels that are connected to a particular filter in
the CNN, i.e., the number of correspondence pixels perceived
by the convolutional filter.

We analyse the reconstruction qualities of two networks
with the same structure but different receptive field sizes, as
illustrated in Fig. 2. For a scene with small disparity (about
3 pixels in the demonstrated example), both networks with
small receptive field (27× 27 pixels) and large receptive field
(53× 53 pixels) can reconstruct high angular resolution light
fields (EPIs) with view consistency, as shown in Fig. 2(a) and
Fig. 2(b). However, for a scene with large disparity (about
9 pixels), the network with small receptive field is not able
to collect enough information from the corresponding pixels
of its center point, as shown clearly at the top of Fig. 2(c).
Note that the actual size of the receptive field can be smaller
than its theoretical size [48]. Consequently, the reconstructed
result suffers from severe aliasing effects, as shown at the
bottom of Fig. 2(c). In comparison, the network with large
receptive field can produce high quality result. In this example,
the input EPIs are stretched along angular dimension for better
demonstration.

Due to the limitation of parameter amount, it is intractable
to expand the receptive field by stubbornly deepening the
network or enlarging the filter size. The fundamental idea of
the proposed approach is to design a light field reconstruction
network that catches the correspondences non-locally across
the spatial and angular dimensions of the light field via non-
local perception. We achieve this with two aspects: 1) a spatial-
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Fig. 3. Architecture of the proposed Spatial-Angular Attention Network (SAA-Net). The SAA-Net is composed of (a) a multi-scale reconstruction structure,
and (b) a Spatial-Angular Attention Module (SAAM). The input is a 3D slice (L(u, v, s) or L(v, u, t)) of the light field.The batch and channel dimensions
are omitted in the figure.

angular attention module inspired by the non-local attention
mechanism [1], [2]; and 2) an encoder-decoder network that
can reduce the redundancies in the light field so that the non-
local perception can be implemented efficiently.

IV. SPATIAL-ANGULAR ATTENTION NETWORK

In this section, we first introduce the overall architecture
of the proposed Spatial-Angular Attention Network for light
field reconstruction, which is termed as SAA-Net. We then
present the proposed spatial-angular attention module that is
specifically designed for disentangling the disparity informa-
tion with a non-local perception. The input of the SAA-Net
is a 3D light field slice with two spatial dimensions and one
angular dimension, i.e., L(x, y, s) (or L(y, x, t)). By splitting
light field into 3D slices, the proposed network can be adopted
for not only 3D light fields from a single-degree-of-freedom
gantry system but also 4D light fields from plenoptic camera
and camera array system.

For a 4D light field L(x, y, s, t), we adopt a hierarchical
reconstruction strategy similar with that in [10]. The strategy
first reconstruct 3D light fields using slices Lt∗(x, y, s) and
Ls∗(y, x, t), then use the 3D light fields from the synthesized
views to generate the final 4D light field.

A. Network Architecture

We propose a multi-scale reconstruction structure to main-
tain the view consistency (i.e., continuity in the angular
dimension) in the low spatial scale while preserving fine

details in the high spatial scales. The backbone of the proposed
SAA-Net follows the encoder-decoder structure with skip
connections, also known as U-net, as shown in Fig. 3(a). But
the proposed SAA-Net has two particular differences: 1) We
use deconvolution along the angular dimension in each skip
connection branch before the concatenation in the decoder
part; 2) We apply convolution layers with stride specifically
in the spatial dimensions of the light field. Table I provides
the detailed configuration of the proposed SAA-Net.

The encoder part of the SAA-Net construct multi-scale
light field features and reduces the redundant information in
the spatial dimension to alleviate the computational and GPU
memory costs for the non-local perception in the spatial-
angular attention module. We use two convolutional layers
(3D) with stride [2, 2] and [2, 1] to downsample the spatial res-
olution of the light field with ratio 4 and 2 along the width and
height dimension, respectively. Before each downsampling,
two 3D convolutional layers with filter sizes 3 × 1 × 3 and
1 × 3 × 3 (width, height and angular) are employed to take
place of a single convolutional layer with filter size 3× 3× 3,
reducing 1/3 parameters without performance degradation.

The skip connections are fed with the feature layers before
the downsampling in each encoder level, as shown in Fig. 3(a),
which have full and half spatial resolutions. For each skip
connection, a deconvolution layer (also known as transpose
convolution layer) is then applied to upsample the feature map
in the angular dimension, followed by a 1×1×1 convolution.
For the reconstruction of a 3D light field L(x, y, s), the angular
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TABLE I
DETAIL CONFIGURATION OF THE PROPOSED SAA-NET, WHERE k
DENOTES THE KERNEL SIZE, s THE STRIDE, chn THE NUMBER OF

CHANNELS, CONV THE 3D CONVOLUTION LAYER, DECONV THE 3D
DECONVOLUTION LAYER AND CONCAT THE CONCATENATION.

Layer k s chn Input
Encoder

Conv1 1 3× 1× 3 - 1/24 L(x, y, s)
Conv1 2 1× 3× 3 - 24/24 Conv1 1
Conv1 3 3× 3× 1 [2, 2, 1] 24/48 Conv1 2
Conv2 1 3× 1× 3 - 48/48 Conv1 3
Conv2 2 1× 3× 3 - 48/48 Conv2 1
Conv2 3 3× 1× 1 [2, 1, 1] 48/96 Conv2 2
Conv3 1 1× 1× 1 - 96/48 Conv2 3
Conv3 2 3× 1× 3 - 48/48 Conv3 1
Conv3 3 1× 3× 3 - 48/48 Conv3 2
Conv3 4 3× 1× 3 - 48/48 Conv3 3
Conv3 5 1× 3× 3 - 48/48 Conv3 4

Skip connection
Deconv4 1 3× 1× 7 [1, 1, αa] 24/24 Conv1 2
Conv4 2 1× 1× 1 - 24/24 Deconv4 1
Deconv5 1 3× 1× 7 [1, 1, αa] 48/48 Conv2 2
Conv5 2 1× 1× 1 - 48/48 Deconv5 1

SAAM
Decoder

Conv6 1 1× 1× 1 - 48/96 SAAM
Deconv6 2 4× 1× 1 [2, 1, 1] 96/48 Conv6 1
Concat1 - - - Conv6 1;Conv4 2
Conv6 3 3× 1× 3 - 48/48 Concat1
Conv6 4 1× 3× 3 - 48/48 Conv6 3
Deconv7 1 4× 4× 1 [2, 2, 1] 48/24 Conv6 4
Concat2 - - - Conv7 1;Conv5 2
Conv7 2 3× 1× 3 - 24/24 Concat2
Conv7 3 1× 3× 3 - 24/24 Conv7 2
Conv8 3× 3× 3 - 24/1 Conv7 3

information can be mainly extracted from the 2D EPI E(x, s),
therefore, the filter size in each deconvolution layer is set to
3× 1× 7.

The decoder part of the SAA-Net upsamples the feature
map from the spatial-angular attention module by using two
deconvolution layer with stride [2, 1] and [2, 2] in the spatial
dimensions (width and height). The decoder also receives
information from the skip connections by concatenating the
them along the channel dimension [49], as shown in Fig. 3(a).
We then use two 3D convolutional layers with filter sizes
3×1×3 and 1×3×3 to compress the channel numbers in each
level of the decoder. This can be considered as the blending
of the light field features from different reconstruction scale.
Note that all the reconstructions (upsampling operations) in
the angular dimension are performed by the skip connections
or the spatial-angular attention module, where latter will be
introduced in the following subsection.

B. Spatial-Angular Attention Module

Inspired by the non-local attention mechanism in [1], [2],
we propose a Spatial-Angular Attention Module (SAAM) to
disentangling the disparity information in light field. The main
differences between the proposed SAAM and the previous
non-local attention [1], [2] are as follows: 1) Since the dispar-
ity information is encoded in the EPI, the non-local attention
mechanism is performed in the 2D epipolar plane rather than
the entire 3D space; 2) Taking advantage of the non-local

(a) (b)

(c) M'(x0, s0, x1, s1), s0 = 1
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Fig. 4. Visualization of the attention map. (a) An EPI with a foreground
point A and a background point B; (b) The corresponding high spatial-
angular resolution EPI; (c) Three sub-maps extracted from the attention map.
A point will have a strong response at the location of its correspondence in
the attention map.

perception of the EPI, we embed light field reconstruction in
the spatial-angular attention module.

A straightforward choice of performing spatial-angular at-
tention is to embed the attention module in each resolu-
tion scale of the U-net. However, implementing non-local
perception in the full resolution light field (feature map)
is intractable in terms of computation complexity and GPU
memory. Alternatively, we insert the proposed SAAM between
the encoder and decoder as shown in Fig. 3(b).

In a 3D convolutional network, the feature layer will be
a 5D tensor φ ∈ RB×W×H×A×C (i.e., batch, width, hight,
angular and channel). We first apply two convolution layers
with kernel size 1×1×1 to produce two feature layers φq and
φk with size of B×W×H×A×C ′. The channel number C ′ is
set to be C

8 (i.e., C ′ = 6) for computation efficiency. Then the
feature layers φq and φk are reshaped into 3D tensors φ′q and
φ′k of shapes BH×WA×C ′ and BH×C ′×WA, respectively.
In this way, we merge the angular and width dimensions (s
and x or t and y in a light field) together to implement the
non-local perception in the epipolar plane.

We apply batch-wise matrix multiplication between φ′q and
φ′k and a softmax function to produce a attention map M
as illustrated in Fig. 3(b). The attention map is composed
of BH matrices with shape WA × WA. Each matrix can
be considered as a 2D expansion map of a 4D tensor M ′ ∈
RW×A×W×A (the batch and height dimensions are neglected).
The point M ′(x0, s0, x1, s1) indicates the response of light
field position L(x0, y, s0) to position L(x1, y, s1) in the latent
space. In other words, the attention map is able to capture
correspondence among all the views in the input 3D light field.

We demonstrate the non-local perception of the proposed
SAAM by visualizing a part of the attention map as shown
in Fig. 4. In this example, there are two points A and B with
remarkable visual features as shown in Fig. 4(a). And their
corresponding points in other views are marked as A′ (A′′)
and B′ (B′′). As the viewpoint changes along the angular
dimension, the background point B will be occluded by the
foreground point A, which is demonstrated more obviously
in Fig. 4(b). Fig. 4(c) shows three sub-maps extracted from
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TABLE II
DETAIL CONFIGURATION OF THE PROPOSED SPATIAL-ANGULAR

ATTENTION MODULE (SAAM), WHERE MATMUL DENOTES THE MATRIX
MULTIPLICATION AND ADD THE ELEMENT-WISE ADDITION.

Layer k s chn Input
Conv1 1× 1× 1 - 48/6 Encoder
Conv2 1× 1× 1 - 48/6 Encoder
Conv3 1× 1× 1 - 48/6 Encoder
Reshape1 - - - Conv1
Reshape2 - - - Conv2
Reshape3 - - - Conv3
MatMul1 - - - Reshape1;Reshape2
Softmax - - - MatMul1
MatMul2 - - - Softmax;Reshape3
Reshape4 - - - MatMul2
Conv4 1× 1× 1 - 24/48 Reshape4
Add - - 48/48 Encoder;Conv4
Deconv 3× 1× 7 [1, 1, αa] 48/48 Add
Conv 6 1× 1× 1 - 48/48 Deonv

the attention map M ′ with s0 = 1 and s1 = 1, 2 and 3,
respectively. It can be clearly seen that a point will have the
strongest response at the location of its correspondence in
the attention map. For instance, the response R(A,A′) at the
location M ′(8, 1, 6, 2) for the corresponding patch (A,A′) (the
middle sub-figure of Fig. 4(c)), and the response R(A,A′′) at
the location M ′(8, 1, 4, 3) for the corresponding patch (A,A′′)
(the right sub-figure of Fig. 4(c)). For the occluded point B, the
location of the maximum response changes from M ′(7, 1, 7, 1)
to M ′(7, 1, 4, 3)2. In this case, the attention module is able to
locate the occluded point B′′ through the surrounding pixels.

Similar with φ′q and φ′k, φ′v is obtained by another 1×1×1
convolution using input tensor φ, followed by the reshape
operation. The main difference is that the channel number of
the feature layer is C ′′ = C

2 , i.e., C ′′ = 24 in our imple-
mentation. Another batch-wise matrix multiplication is applied
between the attention map M and φ′v , resulting a 3D tensor
φ′a ∈ RBH×WA×C′′ . We then reshape φ′a into a 5D tensor
φa ∈ RB×W×H×A×C′′ and adopt a 1 × 1 × 1 convolution
to expand the channel dimension from C ′′ to C, generating a
5D tensor (or feature layer) φb ∈ RB×W×H×A×C . We further
multiply the feature layer φb by a trainable scale parameter
(initialized as 0) and add back the input feature layer.

We implicitly adopt the non-local similarities or correspon-
dences captured by the spatial-angular attention in the latent
space and perform light field reconstruction by using deconvo-
lution in the angular dimension, as shown in Fig. 3. The output
of the SAAM is a 5D tensor φc ∈ RB×W×H×(αa(A−1)+1)×C .
By combining the proposed SAAM with the feature maps in
the skip connections, the network is able to reconstruct light
field with view consistency while also preserving the high
frequency components. Detailed parameter setting of SAAM
is listed in Table II.

2Due to the subpixel disparity of point B, the actual location of the
maximum response could be M ′(7, 1, 5.5, 2) in the middle sub-figure of
Fig. 4(c).

GT

SAA-Net
output

y

x

a

Conv layer

Upsampling

Fig. 5. Architecture of the 3D encoder-decoder network designed for the
proposed spatial-angular perceptual loss.

V. NETWORK TRAINING

A. Spatial-Angular Perceptual Loss

Typical learning-based light field reconstruction or view
synthesis methods optimize the network parameters by for-
mulating a pixel-wise loss between the inferred image and
the desired view (or EPI [10]). Recently, researches [30],
[50], [51], [14] show that formulating the loss function in
the high-level feature space will motivate the restoration of
high-frequency components. This high-level feature loss, also
known as perceptual loss, can be computed from part of
the feature layers in the autologous network [17] or other
pre-trained networks [18], such as the commonly-used VGG
network [19].

In this paper, we propose a spatial-angular perceptual loss
that is specifically designed for the high-dimensional light
field data. Existing approaches [14], [51] for light field re-
construction apply perceptual loss between 2D sub-aperture
images, neglecting the view consistency constraint in the
angular dimension. Alternatively, we propose to use a 3D light
field encoder to map the 3D light fields into high-dimensional
feature tensors (width, height, angular and feature channel). To
achieve this, we design another 3D encoder-decoder network
(auto-encoder)3 optimized by using unsupervised learning, i.e.,
the network is trained by inferring (compress and restore) the
input light field. We then employ the encoder part to extract the
high-level feature for the proposed spatial-angular perceptual
loss. Note that the auto-encoder can be also generalized to
4D form. But given that some light field datasets have only
one angular dimension (e.g., light fields from gantry system
in [15]) and the proposed SAA-Net also takes 3D light field
as input, we only adopts 3D convolution in the encoder and
decoder.

Fig. 5 demonstrates the computation process of the proposed
spatial-angular perceptual loss as well as the designed auto-
encoder. We use 3D convolutional layers with kernel size 3×
3× 3 to encode the 3D light field (the SAA-Net output or the
ground truth) into latent representations. The encoder applies
stride convolutional layers with stride 2 in each dimension to
compress the light field from low-level pixel space into high-
level feature space. The decoder employs bilinear upsampling

3The architecture of the 3D auto-encoder for the perceptual loss is different
with that of the SAA-Net.
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and convolutional layers to restore the light field from the
latent representations. Detailed configuration of each layer is
shown in Fig. 5. The loss function LAE for optimizing the
auto-encoder is as

LAE(LHR) = ‖fAE(LHR)− LHR‖1,

where fAE denotes the auto-encoder.
With the unsupervised learning, the encoder part is trained

to extract high-frequency features in different scales. In this
paper, we use the second, fourth and sixth layers in the encoder
to form the spatial-angular perceptual loss

Lfeat(L̂HR, LHR) =
∑

l=2,4,6

λ
(l)
feat‖φ

(l)
ae (L̂HR)−φ(l)ae (LHR)‖1,

where φ
(l)
ae (·) (l = 2, 4, 6) denotes the feature layers in the

encoder, and λfeat = 0.2, 0.2, 0.1 is a set of hyperparameters
for the proposed spatial-angular perceptual loss, L̂HR is the
light field reconstructed by the SAA-Net and LHR is the
desired high-angular resolution light field.

To prevent the potential possibility that different light field
patches are mapped to the same feature vector [17], our loss
function also contains a pixel-wise term Lpix using Mean
Absolute Error (MAE) between L̂HR and LHR, i.e.,

Lpix(L̂HR, LHR) = ‖L̂HR − LHR‖1.

Then the final loss function LSAA for training the SAA-Net
is defined as

LSAA = Lpix + Lfeat. (1)

The two terms are weighted by the set of hyperparameters
λfeat in the perceptual loss.

B. Training Data

We use light fields from the Stanford (New) Light Field
Archive [52] as the training dataset, which contains 12 light
fields4 with 17×17 views. Since the network input is 3D light
fields, we can extract 17 L(x, y, s) and 17 L(y, x, t) in each
4D light field set. Similar with the data augmentation strategy
proposed in [36], we augment the extracted 3D light fields
using shearing operation [53]

Ld(x, y, s) = L(x+ (s− S

2
) · d, y, s),

where S is the angular resolution of the 3D light field
L(x, y, s) and Ld(x, y, s) is the resulting 3D light field with
shear amount d. Ld(y, x, t) can be obtained similarly. In
practice, we use two shear amounts d±2. The shearing-based
data augmentation increases the number of training examples
by 2 times. More importantly, the disparity effects in the
augmented light field will be more obvious as shown in Fig.
6, enabling the network to address the large disparity problem.

To accelerate the training procedure and insure the same
resolution between the input examples in the meantime, the
extracted 3D light fields are cropped into sub-light fields of

4The light field Lego Gantry Self Portrait is excluded from the training
dataset since the moving camera may influence the reconstruction perfor-
mance.

d = 2

d = -2

Fig. 6. An illustration of training data augmentation using shearing operation.
For clear display, one of the spatial dimension in the 3D light field is ignored.

spatial resolution 64× 24 (width and height for L(x, y, s) or
height and width for L(y, x, t)) with stride 40 pixels. About
6.7× 105 examples can be extracted from the 3D light fields
(original and augmented).

C. Implementation Details

Two models with reconstruction factors (upsampling scale
in the angular dimension) αa = 3, 4 are trained. The in-
put/output angular resolution of the training samples for these
two models are 5/17 and 6/16, respectively. Although the
reconstruction factor of the network is fixed, we can achieve a
flexible upsampling rate through network cascade. The training
is performed on the Y channel (i.e., the luminance channel)
of the YCbCr color space. We initialize the weights of both
convolution and deconvolution layers by drawing randomly
from a Gaussian distribution with a zero mean and standard
deviation 1 × 10−3, and the biases by zero. The network is
optimized by using ADAM solver [54] with learning rate of
1 × 10−4 (β1 = 0.9, β2 = 0.999) and mini-batch size of
28. The training model is implemented using the Tensorflow
framework [55]. The network converges after 8×105 steps of
backpropagation, taking about 35 hours on a NVIDIA Quadro
GV100.

VI. EVALUATIONS

In this section, we evaluate the proposed SAA-Net on
several datasets, including light fields from gantry system, light
fields from plenoptic camera (Lytro Illum [6]). We mainly
compare our approach with three state-of-the-arts learning-
based methods by Kalantari et al. [7] (depth-based), Wu et
al. [10] (without explicit depth) and Yeung et al. [11] (without
explicit depth). To empirically validate the effectiveness of
the proposed schemes, we perform ablation studies of our
approach by training our network without the SAAM, with-
out the multi-scale reconstruction structure and without the
spatial-angular perceptual loss, respectively. The quantitative
evaluations is reported by measuring the average PSNR and
SSIM [56] values over the synthesized views of the luminance
channel. For more quantitative and qualitative evaluations,
please see the submitted video.

A. Evaluations on Light Fields from Gantry Systems

A gantry system capture a light field by mounting a
conventional camera on a mechanical gantry. Typical gantry
system takes minutes to hours (depending on the angular
density) to take a light field. With a high quality DSLF
reconstruction / view synthesis approach, the acquisition time
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Fig. 7. Comparison of the results on the light fields from the CIVIT Dataset [15] (16× upsampling). The results show one of our reconstructed view, EPIs
extracted from light fields reconstructed by each method.

TABLE III
QUANTITATIVE RESULTS (PSNR/SSIM) OF RECONSTRUCTED LIGHT FIELDS ON THE LIGHT FIELDS FROM THE CIVIT DATASET [15].

Scale Seal & Balls Castle Holiday Dragon Flowers Average
Kalantari et al. [7]

8×
46.83 / 0.990 39.14 / 0.973 36.03 / 0.979 43.97 / 0.989 39.00 / 0.989 40.99 / 0.984

Wu et al. [10] 49.01 / 0.997 37.67 / 0.984 40.46 / 0.995 48.38 / 0.997 45.85 / 0.998 44.27 / 0.994
Yeung et al. [11] 49.83 / 0.997 40.84 / 0.993 41.16 / 0.996 48.61 / 0.997 47.83 / 0.997 45.65 / 0.996
Our proposed 51.05 / 0.998 43.15 / 0.994 42.27 / 0.997 49.68 / 0.998 48.35 / 0.998 46.90 / 0.997
Kalantari et al. [7]

16×

43.13 / 0.985 36.03 / 0.965 32.44 / 0.961 39.50 / 0.985 35.21 / 0.973 37.26 / 0.974
Wu et al. [10] 45.21 / 0.994 35.20 / 0.977 35.58 / 0.987 46.39 / 0.997 41.60 / 0.995 40.80 / 0.990
Yeung et al. [11] 44.38 / 0.992 37.86 / 0.989 36.06 / 0.988 45.52 / 0.997 42.30 / 0.994 41.22 / 0.992
w/o SAAM 46.85 / 0.995 37.78 / 0.989 36.17 / 0.988 47.10 / 0.998 42.98 / 0.996 42.18 / 0.993
w/o MSR structure 46.53 / 0.995 38.33 / 0.990 36.94 / 0.989 46.92 / 0.997 43.01 / 0.996 42.35 / 0.993
w/o SAP loss 49.02 / 0.996 40.69 / 0.992 38.97 / 0.992 48.23 / 0.997 44.46 / 0.997 44.27 / 0.995
Our proposed 49.35 / 0.997 40.85 / 0.992 39.01 / 0.993 48.54 / 0.998 44.67 / 0.997 44.48 / 0.995

will be considerably reduced. In this experiment, we use
light fields from the CIVIT Dataset [15] (1 × 193 views of
resolution 1280× 720) and the MPI Light Field Archive [16]
(1 × 101 views of resolution 960 × 720) with upsampling
scales 8× and 16×. In this experiment, the performances in
terms of both angular sparsity and non-Lambertian are taken
into consideration. Since the vanilla version of the network by
Yeung et al. [11] was specifically designed for 4D light fields,
we modify the convolutional layers for the 3D input while
remain the network architecture unchanged. The networks by
Kalantari et al. [7] and Yeung et al. [11] are re-trained using
the same training dataset as the proposed network. In the
modified implementation, every 8 (6) views are applied to
reconstruct (synthesize) a 3D light field of 22 (21) views for
the networks of reconstruction factor αa = 3 (αa = 4). We
use network cascade to achieve different upsampling scales,
e.g., two cascades for 16× upsampling using a network of
reconstruction factor αa = 4.

Fig. 7 shows the reconstruction results on three light fields,
Castle, Holiday and Flowers, from the CIVIT Dataset [15]
with upsampling scale 16× (disparity range dmin − dmax =
14px). The first case and the third case have thin structures
with complex occlusions. The depth and learning-based ap-

proach by Kalantari et al. [7] fail to estimate depth maps
accurately enough to warp the input images, and the color
CNN is not able to correct the misaligned views, producing
ghosting artifacts as shown in the figure. For the second
case, we demonstrate reconstructed EPIs in a highly non-
Lambertian region, as shown in the figure. Caused by the
depth ambiguity, the approach by Kalantari et al. [7] produces
choppiness artifacts along the angular dimension. Due to the
limited receptive field of the networks, the results by Wu et
al. [10] and Yeung et al. [11] show aliasing effects in various
degrees. Table III lists the quantitative measurements on the
light fields from the CIVIT Dataset [15] with upsampling scale
8× and 16×.

Fig. 8 shows the reconstruction results on three light fields,
Bikes, FairyCollection and WorkShop, from the MPI Light
Field Archive [16] with upsampling scale 16× (disparity range
up to 33.5px). The first case has complex structure occluded
by the foreground bikes as shown in the top row of Fig. 8.
The baseline methods fail to reconstruct the complex structure
in the background. Among them, the depth and learning-
based approach [7] fail to estimate a proper occlusion relation
between the bikes and the background. The second scene is
a non-Lambertian case, i.e., a refractive glass before the toys.
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Fig. 8. Comparison of the results on the light fields from the MPI Light Field Archive [16] (16× upsampling).

TABLE IV
QUANTITATIVE RESULTS (PSNR/SSIM) OF RECONSTRUCTED LIGHT FIELDS ON THE LIGHT FIELDS FROM THE MPI LIGHT FIELD ARCHIVE [16].

Scale Bikes FairyCollection LivingRoom Mannequin WorkShop Average
Kalantari et al. [7]

8×
34.83 / 0.969 36.66 / 0.977 46.35 / 0.991 40.62 / 0.983 38.66 / 0.986 39.42 / 0.981

Wu et al. [10] 38.39 / 0.990 40.32 / 0.992 45.48 / 0.996 43.26 / 0.995 41.55 / 0.995 41.80 / 0.994
Yeung et al. [11] 39.55 / 0.993 40.25 / 0.993 47.32 / 0.997 44.49 / 0.996 43.17 / 0.996 42.96 / 0.995
Our proposed 40.53 / 0.995 42.23 / 0.995 47.96 / 0.997 45.02 / 0.996 45.29 / 0.997 44.21 / 0.996
Kalantari et al. [7]

16×
30.67 / 0.935 32.39 / 0.952 41.62 / 0.973 37.15 / 0.970 33.94 / 0.971 35.15 / 0.960

Wu et al. [10] 31.22 / 0.951 30.33 / 0.942 42.43 / 0.991 39.53 / 0.989 33.49 / 0.977 35.40 / 0.970
Yeung et al. [11] 32.67 / 0.967 31.82 / 0.969 43.54 / 0.993 40.82 / 0.992 37.21 / 0.988 37.21 / 0.982
Our proposed 36.01 / 0.985 36.13 / 0.982 46.45 / 0.997 41.08 / 0.993 39.11 / 0.992 39.76 / 0.990

The approach by Kalantari et al. [7] cannot reconstruct the
refractive object. And the reconstructed EPIs by the baseline
methods [10], [11] appear severe aliasing effects. Table IV lists
the quantitative measurements on the light fields from the MPI
Light Field Archive [16] with upsampling scale 8× and 16×.

Ablation studies. We empirically validate the proposed
approach by performing the following ablation studies. First,
we replace the proposed SAAM with a simple transpose
convolution layer, denoted as “w/o SAAM” for short. As
show by the quantitative result in Table III, the average PSNR
value decreases about 2.3dB without the SAAM. In the second
ablation study, we use a typical 3D U-net as the backbone
and remove the transpose convolution layer in the SAAM,
denoted as “w/o MSR structure” for short (without the Multi-
Scale Reconstruction structure). The angular reconstruction is
simply realized by using transpose convolution at the end of
the network. The performance of the network decreases about
2.1dB in terms of PSNR. In the last ablation study, we train
the proposed SAA-Net simply by using the pixel-wise term
(MAE loss) without the proposed spatial-angular perceptual
loss, denoted as “w/o SAP loss” for short. The performance
(PSNR) decreases about 0.21dB.

B. Evaluations on Light Fields from Lytro Illum

We evaluate the proposed approach using three Lytro light
field datasets (113 light fields in total), the 30 Scenes dataset

by Kalantari et al. [7], and the Reflective and Occlusions
categories from the Stanford Lytro Light Field Archive [57].
In this experiment, we reconstruct a 7×7 light field from 3×3
views (3× upsampling) and a 8×8 light field from 2×2 views
(7× upsampling). Since the vanilla versions of the networks
by Kalantari et al. [7], Yeung et al. [11], Wang et al. [35] and
Meng et al. [51] are trained on Lytro light fields, we use their
original parameters without re-training. Note that the proposed
network is not fine-tuned on any Lytro light field datasets, and
the results are produced by the same set of network parameters
for both upsampling scales 3× and 7×.

We demonstrate two cases with relatively large disparities
(maximum disparity up to 13px), IMG1743 from the 30
Scenes [7] and Occlusions 23 from the Occlusions catego-
ry [57], as shown in Fig. 9. In both cases, the reconstruction
results by Wu et al. [10] and Yeung et al. [11] show ghosting
artifacts around the region with large disparity (background
in the IMG1743 case, and foreground in the Occlusions 23
case), which we believe are caused by the limited receptive
field of their networks. The depth and learning-based approach
by Kalantari et al. [7] produces plausible result in the first
case, but appears tearing artifacts near the occlusion boundary
as marked by the red arrow in the EPI. In the second case, the
approach by Kalantari et al. [7] fail to estimate proper depth
information, introducing misalignment as shown by the EPI.
In comparison, the proposed SAA-Net provides reconstructed
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Fig. 9. Comparison of the results on the light fields from Lytro Illum. The results show the error map (absolute error of the grey-scale image) and the EPIs
at the location marked by red lines. Light fields are from the 30 Scenes [7] and the Occlusions category [57].

TABLE V
QUANTITATIVE RESULTS (PSNR/SSIM) OF RECONSTRUCTED VIEWS ON

THE LIGHT FIELDS FROM LYTRO ILLUM [6]. THE 30 Scenes DATASET
COURTESY OF KALANTARI et al. [7], AND THE Reflective AND Occlusions

CATEGORIES ARE FROM THE STANFORD LYTRO LIGHT FIELD
ARCHIVE [57].

Scale 30 Scenes Reflective Occlusions
Kalantari et al. [7]

3×

39.62/0.978 37.78/0.971 34.02/0.955
Wu et al. [10] 41.85/0.992 41.76/0.986 38.52/0.970
Yeung et al. [11] 44.53/0.990 42.56/0.975 39.27/0.945
Wang et al. [35] 43.82/0.993 39.93/0.959 34.69/0.923
Meng et al. [51] - / - 40.14/0.964 36.05/0.929
Our proposed 44.69/0.996 43.99/0.991 40.33/0.969
Kalantari et al. [7]

7×

38.21/0.974 35.84/0.942 31.81/0.895
Wu et al. [10] 36.74/0.969 36.55/0.964 33.11/0.939
Yeung et al. [11] 39.22/0.977 36.47/0.947 32.68/0.906
Meng et al. [51] - / - 36.97/ - 33.24/ -
Our proposed 39.09/0.983 37.47/0.977 33.77/0.952

light fields with higher view consistency (as shown in the
demonstrated EPIs). Table V lists the quantitative results on
the evaluated Lytro light fields. The PSNR and SSIM values
are averaged over the light fields in each dataset.

VII. FURTHER ANALYSIS

A. Spatial-Angular Attention Map

We visualize additional attention maps on scenes with
large disparity and non-Lambertian effect as shown in Fig.
10. We demonstrate the spatial-angular attention on a scene
with large disparities in Fig. 10(a). In this case, the disparity
between neighbouring views are about 16 pixels. Due to the
spatial downsampling in the SAA-Net, the disparity of the
light field (feature map) fed to the SAAM is about 4 pixels,
see the top left figure in Fig. 10(a). Part of the attention
map M ′(x0, s0, x1, s1), s0 = 1, s1 = 1, 2, 3 is visualized
in the bottom of Fig. 10(a). We can clearly see the the
response moves from R(A,A) at the positon M ′(13, 1, 13, 1)
to R(A,A′′) at the position M ′(13, 1, 5, 1) along the angular
dimension.

Fig. 10(b) demonstrates the spatial-angular attention on a
scene with non-Lambertian effect. In this case, the positional

relation of the corresponding points B, B′ and B′′ does
not follow their depth, as clearly shown in the top right
figure of Fig. 10(b). We visualize part of the attention map
M ′(x0, s0, x1, s1), s0 = 3, s1 = 1, 2, 3 in the bottom of
Fig. 10(b). The result shows that the proposed SAAM is
able to catch the correspondences even for regions with non-
Lambertian effects.

B. Tensor Decomposition for Spatial-Angular Attention

Although we propose a multi-scale reconstruction structure
to alleviate the GPU memory cost, the SAAM will still eat
up the GPU memory when dealing with an input light field
with high spatial-angular resolution. For example, when recon-
structing light fields from the MPI Light Field Archive [16]
(spatial resolution 960× 720), we have to disassemble the 3D
data into sub-light fields of resolution 960 × 24 × 25 (width,
height and angular). Our investigation shows that the disas-
sembling will cause a negative effect on the reconstruction
quality.

We therefore apply the truncated Singular Value De-
composition (SVD) [58] to compact the 3D tensor φ′q ∈
RBH×WA×C′ and φ′k ∈ RBH×C′×WA before computing the
attention map

φ = USV T ,

where φ denotes φ′q or φ
′T
k , U and V are two orthogonal

matrices (ignoring the batch dimension), and S is a diagonal
matrix with singular values along its diagonal. By truncating
the diagonal matrix S with the largest τ singular values, we
can get a good approximation φ ≈ USτV T and also compress
the 3D tensors. Since the rank of the matrices are C ′ = 6, the
parameter of the truncated SVD τ = [1, 2, · · · , C ′].

Fig. 11 shows the performance on PSNR in function of
the SVD decomposition using the largest τ = [1, 2, · · · , 6]
singular values. As we can see from the curve “SVD”, with
no less than three singular values, the SVD decomposition
will maintain the network performance without using fine-
tuning. Moreover, since the decomposition enables us to feed
the network with higher spatial resolution input, e.g., from
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Fig. 10. Additional results of attention map on scenes with (a) large disparity and (b) non-Lambertian effect.
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Fig. 11. The performance curve (PSNR) against the SVD decomposition of
the proposed SAAM. The “SVD” denotes the truncated SVD with different
parameters τ . The “Original” denotes the SAAM without SVD decomposition.
The “SVD-Ext” denotes the truncated SVD with parameter τ = 3 and the
input sub-light fields of resolution 960 × 64 × 25. The results are averaged
on the 5 light fields from the MPI Light Field Archive [16].

960×24×25 to 960×64×25, we can obtain a reconstruction
result with even higher quality when employing truncated SVD
decomposition, as shown by the “SVD-Ext” in the figure.

C. Limitations

The non-local attention involves outer product of large scale
matrices, especially for the high-dimensional light field data.
For this reason, the proposed network takes almost 15% of the
time on the SAAM. For a 3D light field, the network takes
about 53 seconds to reconstruct a 1×97 light field from 1×7
views of spatial resolution 960× 720 (16× upsampling), i.e.,
0.54s per view. For a 4D light field from Lytro Illum, it takes
about 18 seconds to reconstruct a 7× 7 light field from 3× 3
views of spatial resolution 536 × 376 (3× upsampling), i.e.,
less than 0.36s per view. And the reconstruction of a 8×8 Lytro
light field from 2× 2 views (7× upsampling) takes less than
30 seconds, i.e., less then 0.5s per view. The above evaluations
are performed on an Intel Xeon Gold 6130 CPU @ 2.10GHz
with a NVIDIA Quadro GV100.

Although we apply a simple SVD decomposition to accer-
late the network and compact the 3D tensor, the compression
rate is limited by the rank of the matrices. Decomposing the
attention map into the combination of small tensors [59] might
solve this problem in a more essential way.

Repetitive patterns in the input light field can cause multiple
plausible responses in the non-local attention, leading to

misalignments in the reconstructed light fields. A possible
solution is to introduce a smooth term in the attention map
to penalize the multiple responses.

VIII. CONCLUSIONS

We have proposed a spatial-angular attention module in
a 3D U-net backbone to capture correspondence informa-
tion non-locally in the light field reconstruction problem.
The introduced Spatial-Angular Attention Module (termed as
SAAM) is designed to compute the responses from all the
positions in the epipolar plane for each pixel in the light field
and produce a spatial-angular attention map that records the
correspondences. The attention map is then applied to driven
the light field reconstruction via deconvolution in the angular
dimension. We further propose a multi-scale reconstruction
structure based on the 3D U-net backbone that implements
the SAAM efficiently in the low spatial scale, while also
preserving fine details in the high spatial scales by using
decovlution-based reconstruction in each skip connenction.
For the network training, a spatial-angular perceptual loss
is designed specifically for the high-dimensional light field
data by pretraining a 3D auto-encoder. The evaluations on
light fields with challenging non-Lambertian effects and large
disparities have demonstrated the superiority of the proposed
spatial-angular attention network.
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