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In Sec. I, we provide an additional Fourier analysis of the downscaling operation compared to the conventional reconstruction
filter. Combining with the analysis in the main paper, we can draw a conclusion that the proposed “shearing-downscaling-
prefiltering” framework in image domain is comparable to the conventional reconstruction filter in the Fourier domain. In Sec.
II, we provide additional reconstruction results, including four qualitative results, more quantitative evaluations and two 4D
error maps. In Sec. III, we discuss the prefiltering and shearing operations after being implemented in the end-to-end optimized
network, and describe the implementation details of the view extrapolation.

I. FOURIER ANALYSIS OF THE DOWNSCALING OPERATION

In this section, we will further analyse the “downscaling operation” in the Fourier domain in both ideal and practical
implementations.

In the following, we will first theoretically analyse the downscaling operation under general conditions. Our original idea
behind the utilizing of “downscaling operation” is to increase the sample interval (e.g., from ∆u to ∆u′) along the spatial
dimension [5], which can be interpreted as reducing camera resolution [5, 26] or disparity [7, 8], as mentioned in the manuscript.
With a proper sample interval, the signal will be bounded by the bandlimit π

∆′
u

1. As illustrated in Fig. 1(a), increasing sample
interval will directly block the aliasing high frequencies. On the other side, the conventional reconstruction filter can be
interpreted as a low-pass filter to reduce the highest frequencies in the spectra support, which is equivalent to increasing the
sample interval when considering an ideal low-pass filter. As illustrated in Fig. 1*(b), the ideal downscaling (increasing sample
interval) and the ideal conventional reconstruction filter (ideal low-pass filtering) produce results with similar qualities. We can
safely draw a conclusion that the downscaling operation generally equals to the conventional reconstruction filter under ideal
conditions.
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Fig. 1: Fourier analysis of the downscaling operation. (a) An ideal downscaling operation increases the sample interval (from ∆u to ∆u′) along the spatial
dimension, which blocks the aliasing high frequencies in the Fourier domain; (b) Similar results can be produced by increasing sample interval and ideal
low-pass filtering; (c) Practical downscaling employs an anti-aliasing interpolation method [32], which barely introduce aliasing components to the spectral
support within region [− π

∆u′ ,
π

∆u′ ]; (d) Some aliasing residuals still exist in the spectra support after the conventional reconstruction filtering, as shown by
the white arrows.

1As indicated in [5], “the maximum camera spacing will be larger if the scene texture variation gets more uniform, or if the rendering camera resolution
becomes lower.” Reducing camera (rendering camera is regarded as sampling camera in [5]) resolution means increasing sample interval along the spatial
dimension, e.g., from ∆u to ∆u′.
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In practical implementation, the downscaling operation is also comparable to the conventional reconstruction filter. In practice,
both the downscaling operation and conventional reconstruction filtering are implemented using a low-pass filter, the former
also includes a downsampling. On the one hand, practical downscaling operation employs an anti-aliasing interpolation method
[32], whose kernel size is in proportion to the downsampling factor. The aliasing residuals after the downsampling operation
have little effect on the original (target) spectral support within region [− π

∆u′ ,
π

∆u′ ], as shown in Fig. 1(c). On the other hand,
after the practical low-pass filtering, there are still some residuals in the spectra support, as shown by the white arrows in
Fig. 1(d). We can block the signal within region [− π

∆u′ ,
π

∆u′ ]. This operation is technically equivalent to the downsampling.
The downsampling operation copies the aliasing residuals with offset 2π

∆u′ (or − 2π
∆u′ ), as shown by the red arrows in Fig.

1(d). Since the amplitude of the aliasing residuals is attenuated, the offset of the aliasing residuals can hardly influence the
reconstructed result.

In conclusion, the proposed “shearing-downscaling-prefiltering” framework in image domain is comparable to the conven-
tional reconstruction filter in the Fourier domain.

II. ADDITIONAL RECONSTRUCTION RESULTS

Fig. 2 shows additional results on light fields from the ICME 2018 Grand Challenge on Densely Sampled Light Field
Reconstruction [40] (“ICME DSLF dataset” for short).

D
D

4 DIBR [41], [42] (41.07 / 0.9839) Wu et al. [12] (38.93 / 0.9872)

Our reconstructed view (PSNR / SSIM) Ours (47.19 / 0.9977) Ground truth

D
D

5 DIBR [41], [42] (36.32, 0.9765) Wu et al. [12] (38.64 / 0.9869)

Our reconstructed view (PSNR / SSIM) Ours (41.95 / 0.9956) Ground truth

Fig. 2: Comparison of the results (16× upsampling) on the light fields from the ICME DSLF dataset [40]. The PSNR and SSIM values are averaged on
the reconstructed views (input views are excluded).

Table I lists additional quantitative evaluations of ×24 and ×32 upsampling rates on the ICME DSLF dataset [40] (DD1,
DD2 and DD3). It can be clearly shown that the proposed DA2N can handle relatively large disparity range (21px, 28px etc.),
without depth estimation.

TABLE I: Quantitative results (PSNR/SSIM) of reconstructed LFs on the LFs from the ICME DSLF dataset [34].

Method DD1 DD2 DD3 Average
(21px) ×24 (28px) ×32 (21px) ×24 (28px) ×32 (21px) ×24 (28px) ×32

DIBR [41], [42] 38.56/0.9857 37.38/0.9834 37.01/0.9647 35.15/0.9610 34.31/0.9689 31.70/0.9593 35.69/0.9705
Wu et al. [12] 38.71/0.9763 36.52/0.9652 33.77/0.9720 31.95/0.9639 30.80/0.9573 28.25/0.9295 33.33/0.9607
Our proposed 45.09/0.9941 43.16/0.9909 37.52/0.9855 36.53/0.9827 35.07/0.9834 33.28/0.9755 38.44/0.9854
The disparity range (dmax − dmin) between the input neighboring views is listed in the table.

Fig. 3 shows additional results on light fields from Lytro Illume [49]. The method without explicit depth by Yeung et al.
[13] and the proposed network work better on those non-Lambertian regions. In addition, we provide a detailed line chart for
each category of light field from Lytro Illum comparing with the state-of-the-art method by Yeung et al. [13] in Fig. 4.

Fig. 5 demonstrates the 4D view consistency by projecting the 4D error maps onto the 2D plane. The demonstrate cases
show 7× 7 reconstruction results using 3× 3 inputs. In each sub-figure, we demonstrate 4D error map (top), 2D error map at
unsampled angular line (bottom left) and 2D RMSE map for each view (bottom right). It can clearly shown that our scheme
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Fig. 3: Comparison of the results on the LFs from Lytro Illume (×3 upsampling). The proposed network and the method by Yeung et al. [13] are able to
reconstruct the non-Lambertian effects.

leads to relatively smaller errors between views at unsampled angular line and those at sampled angular line, compared with
other methods (Kalantari et al. [10] and Yeung et al. [13]). It indicates that the proposed EPI-based method is able to retain
4D view consistency.
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Fig. 4: Detailed line chart for each category of light field from Lytro Illum for 3× upsampling.

III. ADDITIONAL DISCUSSIONS

A. Discussion on the Prefiltering

Although we initialize the kernels in the prefiltering layer by Gaussian functions with different shape parameters σc, the
final shapes of the filters are no longer Gaussian after the network training. We visualize the convolutional kernel of the layer
“conv2_3” before (left) and after (right) the end-to-end training in Fig. 6.

B. Discussion on the Shearing

In this subsection, we will discuss the superiority of implementing shearing operation in deep network comparing with the
classical reconstruction filtering and the influence under different settings of shear range.
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Fig. 5: Reconstruction error maps (4D) for LFs from Lytro Illum.

Fig. 6: The convolutional kernel in the prefiltering layer before (left) and after (right) the end-to-end training.

Fig. 7(a) demonstrates the performance of the proposed network under different shear amounts. For better illustration,
we force the shear amount for each branch of the network to be identical, so does the rendering disparity for the classical
reconstruction filter. The disparity range of such toy example is [0,14], i.e., the optimal rendering disparity is 7. Note that in
practical, different shear amounts are assigned to the branches of the network. It can be clearly shown that the performance of
the proposed approach is stable even when the shear amount is not equal to the optimal rendering disparity. While the classical
reconstruction filter [5] is sensitive to the variation of the rendering disparity (i.e., shear amount).

Fig. 7(b) further demonstrates the performance of the proposed network under different settings of shear range. The shear
amounts are assigned to 7 branches of the network uniformly. The light field is DD1 from the ICME DSLF dataset [40]. A
light field with 1 × 8 views with disparity range [−17.7, 5.9] is used to reconstruct a 1 × 190 light field (27× upsampling).
The setting of shear range varies from [0, 0] to [−34, 34]. The reconstruction result reaches the highest PSNR value using
shear range [−12, 12] and the lowest PSNR value using shear range [−34, 34]. As the reconstruction quality tends to be stable
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Fig. 7: Analysis of performance under different settings of (a) shear amounts and (b) shear ranges.

around shear range [−9, 9] (from [−6, 6] to [−12, 12]), all the results reported in the paper are produced under the setting of
[−9, 9].

The basic principle for determining the shear amounts is ensuring the proposed “shearing-downscaling” framework covers
the disparity range of the input light field. In other words, based on the light field rendering theory that the disparity d should
within 1 pixel range, the shear amount αh is expected to satisfy |d−αh

αu
| ≤ 1 (αu = 4 is the downscaling factor), e.g., for a

disparity range [−13, 13] the shear range would be [−9, 9]. However, when considering the receptive field of a convolutional
neural network, a light field with larger disparity range can also be well reconstructed.

C. Implementation Details of the View Extrapolation

In the training phase (as shown in Fig. 8(a)), we use 7 views to extrapolate a light field with 14 views, i.e., from view #1,
#2, ..., #7 to view #1, #2, ..., #14. And the “deconv5” layer in the extrapolation network performs ×2 upsampling.

In the reasoning (testing) phase, we first use the proposed reconstruction network to interpolate a high angular resolution
light field, e.g., from 1 × 3 views to 1 × 7 views as shown in the left part of Fig. 8(b). We have mentioned in the fourth
paragraph in Sec. 6.4 that “where 7 views are from the interpolation.” Then a 1× 14 (view #8, #9, ..., #21) light field can be
obtained through extrapolation using the reconstructed 1×7 views (view #8, #9, ..., #14) in the first iteration (see the top right
of Fig. 8(b)). In the second iteration, we flip the input views along the angular dimension (view #14, #13, ..., #8) as well as
the spatial dimension (to ensure the occlusion relation) to eventually extrapolate a 1× 21 light field (view #1, #2, ..., #21, see
the bottom right of Fig. 8(b)).

(a) Training phase

Input 7 views

Output 14 views

1×3 to 1×7 

interpolation

Output 14 views

Output 21 views

Iter. 2

(b) Reasoning phase

Input views Interpolation views

Extrapolation views

......

Fig. 8: Detailed implementation of view extrapolation.
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